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ABSTRACT

Globally, ecosystem services are threatened by

increasing urbanization and more variable precipi-

tation patterns driven by climate change. However,

how these drivers interact over long-time scales to

affect underlying processes remains poorly under-

stood, hindering our ability to predict their long-

term consequences. Here, we use long-term data

spanning nearly a century to investigate changes in

hydrologic attributes for two lakes in the Upper

Midwest with urbanizing watersheds. We quanti-

fied flashiness—the variability of runoff rate, vol-

ume, or stage-level of waterways—to investigate

the concurrent impacts of urbanization and climate

change on flashiness and flooding potential. Our

results indicate that flashiness generally increased

for both lakes over the period of 1916–2013, al-

though this overall trend consists of sub-periods of

increase and decrease. Increasing impervious sur-

face area has been the stronger driver of flashiness

historically; however, our results suggest that the

impact of urbanization may reach a threshold, such

that saturation effects would cause large magnitude

precipitation events to become a relatively stronger

driver of flashiness. Increasing flashiness indicates

an increase in flooding potential, documented by

increases in the 10- and 100-year flood threshold

levels as large as 30 cm. Since flashiness is strongly

related to the provisioning of multiple ecosystem

services, the methodology and results presented

here provide a unique approach to gain insight into

how non-linear interactions between global change

drivers, at multiple time scales, impact the simul-

taneous provision of multiple services.

Key words: ecosystem service; hydrologic ser-

vice; freshwater; land use/cover change; climate

change; global change drivers; general additive

model (GAM); Wisconsin.

INTRODUCTION

Urbanization and climate change are two of the

most significant drivers of global change impacting

ecosystems and the provision of ecosystem services

critical for human wellbeing (Foley and others

2005; MEA 2005; United Nations 2008). An esti-

mated two-thirds of the world’s population will live

in cities by 2050 (United Nations 2008); this has
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major implications because urbanization substan-

tially degrades freshwater quality by increasing

human demands for freshwater, replacing land

covers with less permeable or impervious covers,

and fragmenting natural vegetation (Alberti 2005;

Sánchez-Rodriguez and others 2005; Metzger and

others 2006; Grimm and others 2008). Climate

change is expected to further exacerbate these ef-

fects by increasing the frequency and magnitude of

heavy rain events, and creating more volatile

stormwater runoff (IPCC 2013; WICCI 2011; Doerr

and Thomas 2000; Zehe and others 2005). Antici-

pating the consequences of interactions between

urbanization and climate change for ecosystem

services depends on understanding how they

change underlying hydrologic attributes such as

the quantity, quality, and timing of freshwater

flows. This remains challenging because it requires

integrating complex non-linear relationships be-

tween multiple drivers across spatial and temporal

scales, but extrapolating from watershed-level

hydrologic responses during urbanization may

make it possible to encapsulate much of this com-

plexity (Brauman and others 2007; Schneider and

others 2012).

A key mechanism linking the influence of

urbanization and climate change to the supply of

ecosystem services is flashiness, the frequency and

rapidity of short-term changes in flow rates, vol-

ume of surface runoff, and stage levels of water-

ways following precipitation events (Poff 1996;

Booth and others 2001; Baker and others 2004). As

a characteristic of the hydrological regime of a

watershed, it is closely associated with the viability

of specific ecosystem services, especially regulating

services. For example, flashier watersheds or

waterbodies often have a higher flooding potential,

less ability to attenuate storm water runoff, ele-

vated nutrient loading, and reduced groundwater

recharge at local and regional scales (Grimm and

others 2008; Pickett and others 2011). Moreover,

increased flashiness can negatively impact down-

stream ecosystems such as wetlands or riparian

buffers (Meyer and others 2005; Allan 2004).

As such, we argue that flashiness has the potential

to be used as a constituent variable to quantify and

monitor a suite of hydrologic attributes simultane-

ously (Keeler and others 2012). An increase in

flashiness may be observable after even minor in-

creases in urbanization, making it valuable as a

potential early warning indicator of degradation

(Booth 1991; Wenger and others 2009). This has

been largely unexplored, despite the widespread

availability of long-term water-level data that could

be used to quantify changes in flashiness, or the fact

that it could serve as an important analytical indi-

cator by which to assess the relative influence of

various drivers, including urbanization and climate

change, on the hydrologic attributes of a watershed.

Urbanization is known to produce a distinctive

suite of physical, chemical, and biological changes in

watershed hydrology through various land-use and

land-cover changes (Booth1991;Wenger andothers

2009), of which increased flashiness is an important

component. It converts many natural covers such as

riparian forests and wetlands that would otherwise

function to slow hydrologic flow and enhance

groundwater infiltration, sediment retention, and

nutrient absorption. Soil compaction, ditching and

simplification of drainage networks, and increases in

impervious surface area also reduce the infiltration

capacity of landscapes (Leopold 1968; Poff 1996);

this additionally increases surface runoff rates and

volumes, ultimately exacerbating these problems

and increasing flooding risk (Paul and Meyer 2001;

Naiman and Decamps 1997; Fletcher and others

2013). These effects cascade to waterbodies such as

lakes or pondswithinwatersheds, elevating nutrient

levels, raising water temperatures, and increasing

flashiness (Booth 1991; Carpenter and others 1998;

Wenger and others 2009).

Changing precipitation patterns further compli-

cate the effects of urbanization on flashiness, partic-

ularly in regionswhere the frequencyandmagnitude

ofheavy rain events are increasing relative to average

precipitation (IPCC 2013; WICCI 2011). Extreme

precipitation events increase flashiness as a result of

soil saturation thresholds (Doerr and Thomas 2000;

Zehe and others 2005). As rainfall intensity exceeds

infiltration capacity (i.e, reaches a saturation

threshold), any additional precipitation will increase

the rate and volumes of surface runoffmore strongly,

driving disproportionately large increases in the stage

levels of waterways or waterbodies (Doerr and Tho-

mas 2000; Zehe and others 2005). Thus, projected

increases in the variance in precipitation patterns

under future climate scenarioswill likely increase the

flashiness, making runoff and water-level manage-

ment more challenging.

Changes in flashiness can be difficult to predict

given the multitude of factors that altogether

influence flow rates. Although there is a well-

established mechanistic link between increased

flashiness and less permeable or impervious sur-

faces that replace natural land cover (Leopold 1968;

Poff 1996; Naiman and Decamps 1997; Paul and

Meyer 2001), much less is known about how cli-

mate change might mediate such linkages. In par-

ticular, few studies have rigorously teased apart the

relative effects of urbanization and shifting climate
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on flashiness. It is likely that different drivers may

dominate during different times; over long time

scales, climate and management can affect

hydrology and flashiness without changing land

cover directly (Fletcher and others 2013). All of

these factors are likely to interact with precipitation

regimes in ways that are just beginning to be

understood (Franczyk and Chang 2009; Poelmans

and others 2011).

The objective of our study was to understand the

simultaneous impacts of urbanization and chang-

ing precipitation patterns on the long-term

dynamics of flashiness and flooding. We used sev-

eral statistical approaches to analyze historical

patterns of flashiness, urbanization, and from long-

term data for two adjacent watersheds (Lake

Mendota and Monona Watersheds, Wisconsin) in

the Upper Midwest, USA (Figure 1). Previous work

suggests that freshwater ecosystem services have

become increasingly compromised during this time

period (Wegener 2001; Lathrop and others 2005;

Carpenter and others 2005). We quantified chan-

ges in flashiness related to urbanization and

changing precipitation patterns to specifically ad-

dress the following questions: (1) How has flashi-

ness changed in Lakes Mendota and Monona

Watersheds over the past century? (2) What are

the relative importance of urbanization and shifting

precipitation patterns in driving changes of flashi-

ness? (3) How do changes in flashiness affect flood

potential over time? Finally, we discuss how

changes in flashiness may influence lake manage-

ment decisions and lead to tradeoffs among differ-

ent hydrologic services. Our statistical approaches

are chosen to accommodate the potentially non-

linear nature of changing watershed hydrology. By

choosing to work with data from lakes, we hope to

bring these water bodies more explicitly into the

discussion of flashiness and demonstrate that they

are a useful lens through which to investigate the

integrated impacts of changes across an entire

landscape. Furthermore, the generality of the data

that we use in this investigation should make it

straightforward to adapt our analyses to other

watersheds.

METHODS

Study Area

We studied two lakes in the upper Midwestern

U.S., whose watersheds are similar in topology and

soil characteristics, but differ in their histories of

urbanization. Lake Mendota is the largest of four

interconnected lakes along the Yahara River in

Figure 1. Geographic

location and current land

use/cover pattern of two

studied watersheds: Lake

Mendota Watershed and

Lake Monona Watershed.

Delineations of the

watersheds were based on

light detection and

ranging (LiDAR)

elevation, sewer-sheds

from the city of Madison

and a field-checked basin

map from Dane County,

Wisconsin. Land

use/cover data are

derived from National

Land Cover Database

(NLCD) 2006.
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southern Wisconsin (Lathrop 1992). It covers an

area of approximately 4000 ha and has a mean

depth of 12.7 m. Its watershed drains 549 km2 and

is largely agricultural with row crops and pasture.

Originally dominated by a mixture of prairie, oak

savanna, woodlands, and wetlands in pre-settle-

ment times (Curtis 1959), this landscape was

cleared for agriculture during the mid-1800 s; by

about 1870, most of the arable land was in agri-

culture. It is currently undergoing a rapid transition

from agricultural to urban and suburban uses as the

city of Madison and surrounding suburbs have in-

creased in size (Dane County Regional Planning

Commission 1992). These changes have been

linked to eutrophication in Lake Mendota, and the

ecological effects have been well-studied within the

North Temperate Lakes Long-Term Ecological Re-

search (LTER) Program (Magnuson and others

2006).

Lake Monona is smaller, covering 1320 ha with a

mean depth of 8 m, and has the smallest watershed

of the four lakes connected by the Yahara, covering

109 km2. The history of land use/cover transition is

very similar to that of Mendota, but a much greater

proportion of the Monona watershed is currently

urban and suburban covers relative to agriculture.

Lake Monona connects to Mendota by a 1.5-km

segment of the Yahara River which undergoes a

change in elevation of only 1.5 m between the two

lakes. Flow rates from Mendota to Monona are

controlled by a lock mechanism at the Mendota

outlet.

Water-Level and Precipitation Data

We used daily records of precipitation and water

level for Lake Mendota and Monona over a his-

torical period beginning in January 1916. Water-

level data were obtained from the United States

Geological Survey (USGS). These originate from

gaging stations at the outlet of lake Mendota at the

Tenney locks (43�05¢42¢¢N, 89�22¢12¢¢W), and the

outlet of lake Monona in Brittingham Park

(43�03¢48¢¢N, 89�23¢49¢¢W). Historical precipitation

data came from the Midwestern Regional Climate

Center. These originate from two different sam-

pling stations, based on the time frame for the data:

station Madison WB CITY (ID: 474966) prior to

1943, and station Madison WSO AIRPORT (ID:

474961) for 1943 to present. In each year, the

months of January–March and November–De-

cember are removed to exclude potential ice-on

dates from analyses, based on the median ice-on

and ice-off dates of each lake (Wisconsin Clima-

tology Office; available at: http://www.aos.wisc.

edu/�sco/). Although snow melt adds additional

runoff in the spring, we have no way of accounting

for this delayed delivery.

Impervious Surface Quantification

Impervious surface area in each watershed was

estimated based on a published empirical relation-

ship with housing united density (HUD) (Lathrop

and others 2007). However, the published rela-

tionship is based on a watershed with upland forest

and recent suburban development, and thereby

our estimates may underestimate impervious sur-

face. HUD estimates were derived from decadal

census data of Dane county from 1940 to 2000.

Census data were imported into ArcGIS 10.0

(ESRI), and all census blocks within each water-

shed boundary were included in the estimate of

HUD. The total HUD for the watershed was con-

verted into an estimate of the percent of impervi-

ous surface based on the empirical relationship

observed by Lathrop and others (2007), as shown

below. The relationship between the percent of

impervious surface and HUD was non-linear, with

break-point at 1 housing unit per acre.

where HUD <1:0; Percent Impervious

¼ 21:5 HUD þ 0:8

where HUD � 1:0; Percent Impervious

¼ 5:7 HUD þ 13:6

ð1Þ

The percent of impervious surface was converted

into area by multiplying with watershed area.

Analysis of Flashiness

The historical data (1916–2013) were analyzed for

changes in flashiness in both Lake Mendota and

Monona Watersheds using two distinct approaches:

by analyzing lake-level variance directly, and by

statistically modeling the response of lake level to

precipitation. A statistical test for stationary vari-

ance was used to answer whether flashiness has

changed significantly in either lake. Then we fit

general additive models (GAMs) to quantify

watershed-level changes indicated by changing

flashiness, using lake level as the response and

precipitation as the explanatory variable. During

the model fitting, we produce three sets of models

with different purposes: (1) models without

impervious surface that span the time range 1916–

2005, with the last eight years reserved for cross-

validation between predicted and real lake-level;

(2) models with impervious surface data that cover

the years 1940–2013 (the full range we have

available for this covariate); and (3) models with-
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out impervious surface data that cover the years

1940–2103 that serve as ‘‘null’’ models to compare

against those fitted to the impervious surface data.

We assessed how changes in flashiness have af-

fected flooding potential, measured by the likeli-

hood of 10- and 100-year floods. Details of

statistical analyses can be found below and in

Supplementary Appendix A. This approach is novel

in several regards including the following: the use

of time series analysis to establish ‘‘baselines’’ for

the variance in drivers and flashiness, and to use

the trend over time as a null model for analytical

comparison of the strength of hypothesized drivers;

the use of GAMs to account for linear and non-

linear patterns of change, and to account for

thresholds in variables like soil saturation; and the

use of flashiness as an integrative analytical indi-

cator of hydrologic attributes.

Test for Changing Flashiness

Changes in the variance in lake level (i.e, flashi-

ness) were assessed using Engle’s test for

heteroskedasticity in a time series. We fit a general

autoregressive conditional heteroskedasticity

(GARCH) model to the daily lake-level data, and

compared the fit to the null hypothesis of

homogenous variance (Engle 1982). The fitted

GARCH models were used to plot the time-de-

pendent magnitude of flashiness for each lake. We

calculated 5-year moving-window averages of the

daily GARCH fits to make changes in flashiness

over longer time scales more apparent.

Statistical Models of Flashiness

Flashiness indicates how a watershed mediates pre-

cipitation events of various sizes. This suggests that

flashiness can be modeled statistically using lake-

level changes as a response to precipitation, and

possibly with additional covariates representing the

watershed or features of the watershed itself. Using

precipitation, percent urban cover, and time as

covariates, we fit statistical models of lake-level re-

sponse for both Mendota and Monona. In its sim-

plest form, ourmodels group the combined effects of

different watershed features (e.g., land cover, land

use, soil properties) into a generic variable, repre-

sented by fitted coefficients on precipitation. Inter-

actions of precipitation with time then account for

temporal trends in watershed response. Interactions

of impervious surface with precipitation then assess

how urbanization specifically has changed the abil-

ity of the watershed to mediate precipitation.

A GAM framework was used to explore fits. This

framework is useful because it allows both para-

metric and non-parametric terms to be combined in

the same model. At the extreme where all terms

are parametric, the GAM becomes a linear model.

Details and comparisons of linear models and

GAMs are given in Supplementary Appendix A, but

here we give a conceptual overview of the model

covariates. We explore both parametric and non-

parametric fits to take advantage of the strengths of

each approach. Non-parametric terms may be more

successful at representing changes across multiple

time scales resulting from the combination of

gradual trends that emerge as a result of land-use

conversion, and abrupt changes resulting from

management decisions. In contrast, the strength of

parametric representations is then their ability to

average across the many short-term, non-linear

fluctuations and more clearly represent any overall,

long-term trend that may be present. The explicit

inclusion of both parametric and non-parametric

model fitting within the bounds of the same ana-

lytical exercise emphasizes the utility of this ap-

proach in assessing the relative contribution of

drivers that occur across multiple scales in a long-

term dataset.

Precipitation is the primary driver of lake-level

increase. It contributes to lake level on the same

day as an event, as well as on subsequent days

following the initial input as runoff gradually

reaches the lake from the surrounding watershed.

The lake level of any given day is then determined

from precipitation of the current day, as well as

precipitation from a number of previous days. This

leads to several lag terms of precipitation.

Threshold effects of soil saturation become

increasingly important as the total amount of pre-

cipitation increases during a single event, and

across multiple-day events. This leads to a non-

linear increase in the effect of precipitation on lake

level as it accumulates during these events.

Threshold response is captured naturally in GAMs

by non-parametric terms, and can be incorporated

into linear models through exponential (squared)

coefficients.

The proximity and topography of Mendota and

Monona make it likely that their lake levels are

interdependent, although this is more likely to be

true for Monona, which is downstream from

Mendota. To account for this, we included terms

for current day lake level of the other lake, as well

as lags over a number of previous days.

The ability of hydrologic services to mediate

precipitation effects on lake level can be impacted

by numerous changes in watershed characteristics.

By including a generic variable of ‘‘time,’’ and

allowing our covariates to interact with time, we

Flashiness and Flooding of Two Lakes



capture the simultaneous effects of all relevant

changes: replacing time with only percent imper-

vious surface accounts for the influence of only

that particular feature. Thus, we produce two dis-

tinct sets of models: one with the generic change in

time representing overall watershed change, and

the other with percent impervious surface area of

the watershed as the driver of change.

The decision to include or exclude terms in all

models was based on minimizing the Akaike

Information Criterion (AIC) (Akaike 1973; Guisan

and others 2002). The AIC is effective for all linear

models including GAMs (Wood 2006). We first

attempted to find the best linear model of lake-level

response for Mendota and Monona in each of the

three scenarios outlined previously (time since

1916, impervious surface since 1940, time since

1940). Once this model was determined, we pro-

ceeded to replace parametric terms with the anal-

ogous non-parametric terms. Decisions to retain a

smooth fit over a parametric fit were made based

on changes in the AIC.

Drivers of Flashiness

Flashiness in lake level is driven by changes in

hydrologic attributes driven by watershed-level

changes in land use/cover, as well as more variable

precipitation patterns. To separate these effects, we

partition flashiness (variance in lake-level response

Ri(t)) into an amplifying/dampening effect of

watershed and an effect of the variance in precip-

itation patterns. At the watershed level, flashiness

should be damped through such mechanisms as

groundwater infiltration and stormwater retention;

as these abilities decline, flashiness should increase.

Consider a linear model of lake level including

current day of precipitation, its interaction with

time, an effect of opposite lake, and a first-order

autoregressive term: Ri(t) = ui + b1 rain0 +

d1t*rain0 + j1Ri(t - 1). The total variance of this

model can be written as

var Rið Þ ¼ T2
1 var rainð Þ þ c2varðRjÞ

1� j2
ð2Þ

The coefficients b1 and d1 have been incorporated

into an overall time effect given by

T2
1 ¼ ðb1 þ d1tÞ2. That is, T2

1 indicates the extent to

which watershed characteristics amplify (T2
1[1) or

dampen (T2
1<1) the underlying variance in precip-

itation. Comparing variability in a baseline period

to subsequent periods amounts to taking the ratio

of Eq. (1) calculated for each time period. After

subtracting var(Rj) and subscripting variables

assuming decades at the beginning and end of the

dataset, the ratio of variances becomes

varhi Rið Þ
varbas Rið Þ �

varhiðRjÞ
varbasðRjÞ

¼ T2
hivarhi rainð Þ

T2
basvarbas rainð Þ ð3Þ

Thus, the ratio Vhi ” varhi(Rj)/varbas(Rj) is parti-

tioned into the proportionate changedue to variance

in precipitation (changed by a factor of Vhi), and the

ratio Thi � T2
hi=T

2
bas gives the proportionate change in

an amplifying/dampening effect of watershed

changes (changed by a factor of Thi). Although we

have demonstrated this calculation for a linear

model, it is equally valid forGAMsbecause terms still

satisfy the same linearity properties.

Since changes in flashiness may not be mono-

tonic over time but consist of multiple peaks, we

identified periods of peak flashiness in the overall

time-series and analyzed them separately. To

identify periods of peak flashiness, we used the

results of the GARCH models to establish an over-

all, mean lake-level variance for each lake. Then a

period of baseline flashiness was identified relative

to the overall mean by finding the longest contin-

uous period with an average variance below the

overall mean. Periods of peak flashiness were

identified when average variance was above the

overall mean.

Flood Potential Analysis

Flood potential is an indication of the likelihood that

lake level will exceed a defined stage height. Greater

flashiness results in a greater potential for floods.We

explored this relationship using a standard approach

to quantify flood potential; we created an annual

flood series based on historical data by identifying

the peak flow lake level for each year, and ranked

them in order of magnitude (U.S. Geological Survey

1982). The frequency of measured lake levels was

well-modeled by a log-normal distribution, and

thus,we followed the convention of fitting a Pearson

Type III (Gamma) distribution to the frequency of

log-maxima (i.e, floods) through direct calculation

of the first three moments (mean, variance, and

skew) (Foster 1924; USGS 1982). The fitted distri-

bution gives flooding potential through the ex-

ceedance probabilities; i. e, the probability that a

peak lake level exceeds a pre-defined threshold.

Specifically, we identify lake levels with likelihoods

of 0.01 (1%) and 0.1 (10%), corresponding to the

100- and 10-year flood thresholds.

To account for the expected non-stationarity in

exceedance probabilities resulting from changing

flashiness, we calculated time-dependent ex-

ceedance probabilities with a moving-window ap-
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proach. Given a certain window width, w, we cal-

culated exceedance probabilities for each time

period (year n + w) for all n beginning at n = 1. We

set w based on time scales suggested by the fitted

GARCH model; thus if the variance was homoge-

nous, then w was the length of the entire dataset.

Our final results then showed 100- and 10-year

flood thresholds as a function of time, as opposed to

a single value summarizing the entire time period

of 1916–2013.

RESULTS

Long-Term Changes in Flashiness

The flashiness of both Lake Mendota and Monona

Watersheds was significantly time dependent

(P < 0.001 for both lakes). The fitted GARCH

models were used to plot daily changes in variance

or flashiness (Figure 2, gray lines), as well as longer

term trends reflected by the 5-year moving average

of daily variance (Figure 2, dark lines) in both

watersheds. The GARCH models anticipated inter-

mediate-term trends in Mendota, where large

spikes at the daily time-scale typically signaled

shifts toward greater flashiness, as revealed by the

moving-window averages. This relationship was

less obvious for Lake Monona, where the overall

volatility of the GARCH model suggested that shifts

in flashiness occurred rapidly.

Lake Mendota and Monona had overlapping

periods of baseline flashiness, and shared peak

periods beginning in the early 1990 s (Figure 2,

dotted lines). Otherwise, the overall trends in

flashiness for the two lakes differed markedly.

Flashiness in Mendota fluctuated at baseline levels

until approximately 1964, and afterwards increased

within distinct sub-peaks. Monona had already

reached a period of peak flashiness at the beginning

of the time series, dropped to baseline levels in the

early 1940s and became flashier again in the early

1990s, concurrent with the most recent increasing

trend for Mendota.

Statistical Models of Flashiness

Mendota and Monona shared a number of over-

arching similarities in the way that lake level re-

sponds to rain, as reflected by similarities in the

explanatory variables that were retained in fitted

models. Precipitation from up to 4 days in the past

has a significant effect in lake levels. The ability of

each watershed to mediate precipitation from a

certain day changed over time, reflected by the

significant rain lag and time interactions in the

models. Precipitation that occurred over multiple

days effected lake level more than precipitation on

any single day; this is evidenced by positive inter-

actions between lags, which indicate that the

magnitude of change in lake level was larger when

precipitation followed previous events.

One of the best predictors of lake level is actually

lake level itself. This is reflected in the autocorre-

lation structure of the models; lake level over pre-

vious days provides a lot of information about

current lake level. In the case of Monona, lake level

was also dependent on Mendota lake level on

previous days, reflecting the fact that Monona is

downstream from Monona. Although it might be

possible for Monona to also influence Mendota

lake level in extreme cases, by overflowing back

along their adjoining tributary, we found no sta-

tistical evidence of this, since none of the Monona

Figure 2. Flashiness—defined as the lake-level vari-

ance—as a function of time for both (A) Mendota and

(B) Monona. Vertical gray lines are the variance as a

function of time at each day in the dataset predicted from

fitted GARCH models of each lake. Solid black lines give

the variance calculated with a 5-year moving window.

Horizontal lines correspond to average variances for cer-

tain periods, with the solid gray lines as overall averages

of the variance. Both (A) Mendota and (B) Monona

were divided into regions of baseline variance (dotted

horizontal lines, below the average) and two peak variance

regions (dotted horizontal lines, above the average).

Flashiness is time dependent in both lakes. In Mendota, it

appears to be increasing in the last 40 years. Monona is

initially flashy, decreases, and then begins to increase in

the last 20 years.

Flashiness and Flooding of Two Lakes
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lake-level terms were retained in the Mendota

model.

In terms of the performance of parametric versus

non-parametric models, both Mendota and

Monona were fit well by both types (Table 1, Fig-

ure 3), but AIC was always lower for fully non-

parametric models (GAMs) (Mendota AIC =

-56427.97, Monona AIC = -44369.82) and was

comparable for parametric models (-56133.88 and

-43729.09). In most cases, the average influence of

explanatory variables (i.e, impervious surface,

time, precipitation) could be inferred from para-

metric fits (Table 1), which provided qualitatively

similar results to non-parametric fits (e.g., Supple-

mentary Figure A1). In the case that non-para-

metric fits reduced to 1 degree of freedom (DF), the

parametric fits can be regarded as essentially

equivalent. However, estimates in the parametric

models were not always significant, while the non-

parametric fits were; this affects the ability to use

parametric terms to infer covariate effects (Sup-

plementary Appendix A).

The GAMs predicted lake level during cross-val-

idation (Figure 3). However, there was a

notable bias in each lake toward matching positive

spikes in lake-level response, although not repre-

senting periods when lake level was below average.

This is likely due to the lack of explanatory vari-

ables corresponding to mechanisms that drive lake

level down, such as drought or manipulation

through opening the locks on Lake Mendota. Al-

though we fit models to account for drought by

including subsequent days without precipitation as

an explanatory variable, these terms did not de-

crease model AIC or improve the cross-validation

(Figure 3).

Lake-Level Response to Precipitation

Both lakes respond the most strongly to recent

precipitation (Table 1: rain0: rain 0 days past,

rain1: rain 1 day past), but this response increased

through time. Precipitation from previous days

(Table 1: rain2: rain 2 days past to rain4: rain

4 days past) has always had an effect on lake level

that is smaller, but this effect decreased for both

Lake Mendota and Monona over the time period of

our data (Table 1, parametric models, rainn*time

interactions). Thus, precipitation that falls in the

watershed reaches the lake more quickly than it

once did.

These trends are also supported by the non-

parametric fits in the GAM models, but this is more

difficult to see. To aid interpretation, we summarize

the GAM fits for each lag of precipitation by plot-
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ting the effect of each precipitation lag (Table 1:

s(rainn), n = 0–3, where n is in units of days and

te(rainn, time) for interactions) on lake level as a

function of time (Figure 4). Multiple curves were

plotted in each panel to create a contour plot. Each

curve on a plot represents the response of lake level

to precipitation events of increasing magnitude,

starting from the mean precipitation value

(2.7 mm), incremented by 1 standard deviation

(7.6 mm). All other explanatory variables were

held constant at mean values.

Here again it is clear that both Mendota and

Monona responded most to recent precipitation

events (i.e, rain0 or rain1) (Figure 4, first and second

rows). Lake-level response across contours (±1SD)

wasnon-linear forMendotaandMonona; thus, given

a constant increment in the amount of precipitation

(7.6 mm), the relative change in lake level tended to

increase with larger precipitation events (Figure 4).

Otherwise, lake-level response to precipitation

has developed differently for Mendota and Monona

through time. For Mendota, lake level has contin-

ued to respond more strongly to rain from the

current day (rain0) up to 2 days past (rain2).

Meanwhile, precipitation from 3 to 4 days past

(rain3 and rain4) has had a weaker effect on lake

level through time. For Lake Monona, lake-level

response to precipitation from the current day

(rain0) has increased overall, while rain from all

previous days has had a weaker and weaker effect.

The response of Monona’s lake level to previous

day’s rain (rain1) is more difficult to interpret; it

shows a decreasing response of Monona lake level

for the first half of the twentieth century, but has

gradually increased since the 1960s.

Lake-Level Response to Impervious Surface Area

The amount of impervious surface area increased in

both Lake Mendota and Lake Monona Watersheds

between the years 1940 and 2000 (Figure 5). It

increased from 49.5 km2 (8.2%) in 1940–

1975.7 km2 (12.6%) in 2000, and increased from

35.8 km2 (16.3%) to 63.7 km2 (28.9%) for lakes

Mendota and Monona, respectively. However, the

relative percent increase in impervious surface was

greater in the Lake Monona than Mendota

Figure 3. The predicted response given by the best-fit

GAM of lake Mendota and lake Monona (dark line) is

positioned over the actual lake-level data (gray lines).

Vertical lines denote the beginning of a new year. In each

case, AIC values suggest good fits (Mendota AIC =

-56427.97, Monona AIC = -44369.82). However, cer-

tain shortcomings of the model are visible, the most

notable being the inability of the Mendota GAM to cap-

ture the sharpest drops in lake level.

Figure 4. Contour plots showing the change through

time of lake-level response to precipitation events of

increasing magnitude, predicted by the best-fit GAM of

lakes Mendota and Monona. Prediction intervals are gi-

ven around each contour (dotted lines). Each contour is

produced by fixing precipitation at a given interval,

allowing time to increase starting from 1916, and fixing

all other explanatory variables at mean values. The

contours begin at the mean precipitation value of

2.6 mm and increment by 1 standard deviation (7.6 mm)

from the previous curve. The magnitude of the response

is relative to average lake levels of 258.99 and 257.56 m

for Mendota and Monona, respectively.
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Watershed, although the watershed area of Lake

Mendota is larger than Monona (602 km2 vs.

220 km2).

Model comparison clearly indicates that land use

dominates long-term changes in lake hydrologic

behavior. Percent impervious surface area in a

watershed was a significant predictor of lake-level

response, according to both the models. It ex-

plained the change in lake-level response since

1940 in both Lake Mendota and Monona (Table 1,

AIC = -43148.9 and -28867.44). GAMs where the

linear effect of time was replaced with percent

impervious surface area as an explanatory variable

had lower AIC values (imperv.men, imperv.mon

versus time.1940: -43148.9 vs. -43030.97 for

Mendota, -32115.92 vs. -32102.5 for Monona,

Table 1). This suggests that the percentage of

impervious surface area provides a better predictive

model of lake-level response.

Drivers of Flashiness

Overall, flashiness was driven more strongly by

watershed-level changes than by changes in pre-

cipitation patterns. One baseline and two peak

periods of flashiness were identified by the GARCH

models and used to analyze the relative importance

of these drivers. In Lake Mendota, the baseline

variance was 0.013 m. The variance of the first

(1974–1982) and second (1993-present) peak

periods increased to 0.020 and 0.030 m, respec-

tively. During the first peak period, the variance

due to precipitation increased by a factor of

Vhi,1 = 1.145, whereas the amplifying effect of

watershed changes increased by a factor of

Thi,1 = 1.350. In the second peak, the variance in

precipitation is greater than the baseline by a factor

of Vhi,2 = 1.323, and the amplifying effect due to

watershed changes is greater by a factor of

Thi,2 = 1.487.

Similar to Lake Mendota, our results in Lake

Monona showed a more pronounced effect of

watershed changes in most peaks, as compared to

the influence of changing precipitation patterns.

Here, the baseline variance was 0.017 m, compared

to variances of 0.031 and 0.036 m for the peaks at

the beginning of the dataset and the peak emerging

Figure 5. The percent of impervious surface area in the (A) Mendota and (B) Monona watersheds since 1940. The

Mendota watershed covers an area of 602 km2, and the Monona watershed is 220 km2 in extent. The Mendota watershed

has increased from 8.2% in 1940 to 12.6% impervious in 2000, whereas the Monona watershed has increased from 16.3%

impervious in 1940 to 28.9% impervious as of 2000.

Figure 6. The change in 10-year (10%) flood levels and

standard errors with respect to time for (A) Mendota and

(B) Monona. Values are calculated as a combination of

annual flood and partial flood series (yielding 30 total

independent peaks) across a 10-year moving window.

The 10-year level gives the peak lake level that should be

observed in a 10-year interval. Higher values indicate

that the largest peak observed in a 10-year period has

increased.
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later in 1995. The variance in the first peak is dri-

ven by the amplifying effect of watershed changes,

which is greater than the baseline by a factor of

Thi,1 = 2.588; the variance in precipitation is actu-

ally lower over this period by a factor of

Vhi,1 = 0.918. In the second peak, the increase in

overall variance is due to increases in both variance

in precipitation by a factor of Vhi,2 = 1.308 and the

amplifying effect of watershed changes by a factor

of Thi,2 = 1.528. Thus, this approach allows one to

assess the amplification in flashiness caused by

drivers like precipitation or land use compared to a

baseline based on historical data.

Flooding Likelihood

The likelihood of flooding increased through time

for both Lake Mendota and Monona (Figure 6).

Both 10-year (10%) and 100-year (1%) flooding

thresholds have generally increased through time

for Mendota, but have fluctuated around an aver-

age level for Monona. In the early 1920s, the 10-

year threshold was 259.26 m for Mendota, reach-

ing 259.64 m by the end of the twentieth century.

These thresholds change little over time for Lake

Monona, beginning at 258.11 m in the early 1920 s

and reaching 258.17 m by the end of the twentieth

century. The 100-year flood threshold follows the

same patterns as the 10-year threshold in both

lakes, with the magnitude of change by approxi-

mately 0.18 and 0.23 m in Mendota and Monona,

respectively.

DISCUSSION

Flashiness has increased in both Lake Mendota and

Lake Monona over the last century (Figure 2)

resulting from both urbanization of land-use/land-

cover types, and regional shifts in precipitation

patterns driven by climate change. The increase in

flashiness is strongly correlated with an increase in

impervious surface area, (Table 1; Figure 5) which

has changed the dynamics of precipitation runoff

by both increasing the total volume of water

entering the lakes, and shifting the timing so that

most runoff reaches the lakes in a short-time period

(i.e, rain lags 0 days past and 1 days past, Figure 4).

These changes in runoff dynamics suggest that

specific hydrologic attributes related to the regula-

tion of flow quantity and timing have been com-

promised. As a result, the likelihood of floods

generally considered to be large enough to damage

property (the 10-y and 100-year thresholds) has

increased (Figure 6). For Lake Mendota, the 10-

year flood level in the twenty first century

(259.64 m) has exceeded its 100-year flood level

for the beginning of the twentieth century

(259.44 m); Mendota now has a 10% chance of

reaching lake levels that it previously had only a

1% chance of reaching. Over the time period

studied, these changes in flashiness and flooding

potential have been driven more strongly by land-

use and land-cover changes within the watershed

than by changing precipitation pattern in both

lakes (Thi,1 > Vhi,1 and Thi,2 > Vhi,2); however, as

discussed below, we also found evidence that more

variable precipitation could eventually become the

stronger driver.

Our study highlights the importance of water-

shed characteristics for hydrologic flashiness of

lakes. The Mendota watershed is dominated by

agriculture, and thus a greater proportion of rainfall

will be first intercepted, infiltrated, and absorbed in

the soil. This should reduce runoff and peak flows,

and generate time lags on lake-level response

(Bennett and others 1999). For Mendota, this is

evidenced in the way that runoff is distributed

through the first several lags of precipitation (i.e,

rain0–4: rain 0–4 days past; Table 1; Figure 4).

Comparison with Lake Monona also highlights the

role of land-cover types. Here, the watershed has

been more than 15% covered by impervious sur-

face since the 1920 s, corresponding to a runoff

threshold proposed by Arnold and Gibbons (1996).

The strong role of urban land cover is reflected in

the threshold that Monona lake-level response to

immediate precipitation events (rain 0) reaches at

this time, and the simultaneous decrease in lake-

level response to later events (rain1 and greater;

Table 1; Figure 4). Additionally, increasing urban-

ization in the Mendota watershed (Figure 6) is

concurrent with an increase in the magnitude of

lake-level response to previous day’s rain (rain1)

and current rain (rain0). Although differences in

watershed size are also reflected in the importance

of particular lags in either lake (that is, the impor-

tance of rain1 for Mendota lake level, versus rain0

on Monona lake level), clearly other explanations

are needed for the various characteristics of lake-

level response we observed.

The changes in hydrologic flashiness of lakes that

were identified in this study point to major impli-

cations for ecosystem services. Increased flashiness

over time might lead to an overall decline in the

regulation of water flow and water quality services,

as evidenced by increased risk of flooding and

degradation of lake clarity (Lathrop and others

2005; Carpenter and others 1998, 2005). Although

management strategies could be implemented to

alter flashiness and enhance certain services,

J. Usinowicz and others



unintended consequent tradeoffs may occur Lovell

and Taylor (2013). For example, in the case of Lake

Mendota and Monona, the lock system currently in

place at the Mendota outflow would allow lake

levels to be maintained below their current average

to buffer against rapid changes and reduce the

potential for flooding. However, the current lake

levels reflect a mandate by the Wisconsin Depart-

ment of Natural resources designed to facilitate

recreational boating, and spring spawning of game

fish species. Thus any attempt to reduce average

lake levels and decrease flashiness to mitigate

flooding potentials would directly impact recre-

ational ecosystem services and fish communities,

especially considering that management to reduce

variance can actually lead to declines in ecosystem

resilience in the long term (Carpenter and others

2015). Furthermore, the linkage between lakes

indicates that this management solution can only

be effective locally; attempts to reduce flashiness in

Lake Mendota push the problem to downstream

lakes such as Monona, creating spatial tradeoffs in

flooding potential (Rodrı́guez and others 2006).

In our study system, the increasing magnitude

and frequency of precipitation events may even-

tually surpass urbanization as the major driver of

flashiness. When soil is fully saturated, any addi-

tional rainfall will turn into runoff and drive more

rapid increases in lake level (Bronstert and others

2002). This is reflected in Figure 4 for both lakes;

the increased spacing in contour lines over constant

increments in precipitation means that larger pre-

cipitation events lead to increasingly larger changes

in lake level. In this scenario, the increased likeli-

hood that soil saturation thresholds are surpassed

(WICCI 2011) means that traditional management

strategies designed to counteract the effects of in-

creased impervious surface area, such as restoring

riparian buffers and promoting green infrastruc-

ture, might ultimately seem ineffective in their goal

of reducing flashiness and flooding potential. Thus,

the efficacy of solutions designed to rehabilitate

watershed hydrology will be complicated by shifts

in the relative importance of urbanization and

precipitation over time.

We focused our analyses on the statistical rela-

tionship between precipitation, impervious surface,

and flashiness. This limits our ability to interpret

trends in flashiness because other forms of land-

cover change or management decisions might also

influence lake-level response. As such, we do not

have explanations for certain features of the re-

sults, such as the two sub-peaks of flashiness in

Lake Mendota within the overall trend. Such finer-

scale trends may be a result of changes in man-

agement policy related to water regulation within

the watershed (for example, a change in the mag-

nitude or location of wastewater output). The

topologies of tributaries and internal basins of lake

watersheds also contribute to lake-level response;

for Mendota and Monona, the elevation change

between watersheds is slight and the lakes are

connected at a very short distance, making it pos-

sible that lake-level responses are more interde-

pendent than our models allow. Their floodplains

are not well defined, which makes them likely to

spread horizontally for substantial distances—fill-

ing wetlands and even moving water back up

tributaries—before increasing lake levels notably.

Wetlands and riparian buffers are known to be

important to influence watershed flashiness and

deliver hydrological services, and even small

changes in their percent cover can have dispro-

portionate impacts (Brauman and others 2007;

Zedler 2003). In the Monona Watershed as much

as 63% of wetlands were lost prior to 1938, which

likely contributed to increased flashiness; wetland

loss from the Mendota watershed, however, was

not significant after 1970, when flashiness in

Mendota increased most rapidly.

Another important contribution of our method-

ology is to use a relatively common dataset to

investigate the simultaneous effects of two different

drivers on flashiness—an important hydrologic at-

tribute that serves as an indicator or watershed

characteristics. Our approach is readily applicable

to other watersheds and could also facilitate the

assessment of implications on ecosystem services

from changes in flashiness, especially those related

to the quantity and timing of freshwater availabil-

ity. Despite the way that this approach averages

over landscape heterogeneity within a watershed,

it was able to identify a clear signal of impervious

surface in the change in lake flashiness over time.

Additionally, it was able to differentiate this signal

from that of shifting precipitation patterns, thus

making it possible to unmask the various effects of

single drivers (Gillon and others 2015).

CONCLUSION

Our results showed that urbanization has been a

dominant driver of flashiness, relative to climate

effects, over the past century. Although it is widely

acknowledged in the literature that increased

impervious surface leads to increased flashiness and

flood probability, our results provide additional

support by separating the confounding effects of

climate, and assessing their relative contributions.

The fact that land use is a stronger driver suggests
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that classic strategies for rehabilitating watershed

hydrology such as reducing imperviousness, or

increasing riparian buffers like wetlands, may be

effective options to buffer against future climate

changes (Qiu and Turner 2015; Turner and others

2013). On the other hand, the effects of urbaniza-

tion may reach a threshold such that saturation

effects would cause large magnitude precipitation

events (as anticipated with future climate changes)

to be a stronger drivers of flashiness.

Quantifying long-term changes in flashiness re-

veals the complicated interactions between urban-

ization and climate change that affect the

hydrologic attributes of regional watersheds, and

thus their capacity to sustain important ecosystem

services. Increased flashiness may make it more

likely that flooding will occur, while also reducing

groundwater levels through reduced infiltration

times. This simultaneous change in hydrological

attributes has been reported previously, and iden-

tified as a driver of decreased health in multiple

ecosystem services simultaneously (Qiu and Turner

2013; Maes and others 2013), thus supporting the

idea that ecosystem services are usually bundled

together (Foley and others 2005; Raudsepp-Hearne

and others 2010). We have suggested that flashi-

ness may be useful as a constituent variable due to

its relationship with multiple ecosystem services,

but this remains to be investigated in more depth.

However, there is much to be gained because

flashiness can be easily measured with commonly

available, long-term datasets. Thus, there is

potential for our study to enhance the successful

long-term management of multiple ecosystem ser-

vices simultaneously.
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