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Abstract
Global environmental changes drive biodiversity loss and community compositional change. Yet whether and how both 
factors simultaneously impact biomass dynamics in natural ecosystems remains elusive, especially considering their multidi-
mensional effects (e.g., taxonomic, functional, and phylogenetic) over spatial scales. To fill this knowledge gap, we generated 
an experimental spatial gradient using circular quadrats that vary in radius (2–30 m) in a subtropical forest on Dinghushan 
Mountain, China. Within each quadrat over 10 years, we calculated the changes in aboveground biomass (i.e., net Δbiomass), 
biodiversity (i.e., Δbiodiversity for richness, Shannon diversity, functional, phylogenetic), and community composition (i.e., 
β-diversity for taxonomic, functional, phylogenetic). Based on multi-model inference, we determined the most parsimonious 
relationships of Δbiomass as a function of Δbiodiversity and β-diversity and then quantified their standardized coefficients 
in response to the spatial gradient. Our results showed that Δbiomass, Δbiodiversity, and β-diversity decreased with quadrat 
size; the former at an accelerating rate and the latter at decelerating rates. While Δbiomass as a function of Δbiodiversity and 
β-diversity had low occurrences across the gradient, Δbiomass was strongly related to the change in functional dispersion 
(i.e., ΔFDis) and taxonomic β-diversity at larger spatial scales. Our results suggest scale-dependent influences of biodiversity 
loss and community compositional change on biomass dynamics in natural ecosystems. Further, our results highlight that 
multiple dimensions of biodiversity should be considered when predicting biomass dynamics at large spatial scales.

Keywords Alpha diversity · Beta diversity · Biodiversity-ecosystem functioning · Dinghushan Mountain · Functional 
diversity · Phylogenetic diversity

Introduction

Global environmental changes can lead to local plant diver-
sity losses and substantial shifts in the species composition 
of plant communities (Sala et al. 2000). How such changes 
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influence biomass production, a central ecosystem function, 
remains elusive, especially in natural ecosystems (Mori 
et al. 2018; van der Plas 2019). Not only are these multi-
dimensional relationships spatially variable and temporally 
dynamic (Reich et al. 2012), but also their underlying drivers 
can be complicated and context-specific (Hou et al. 2022). 
Beyond the effects of abiotic and biotic factors (e.g., climate, 
soil, fungi; Liu et al. 2021, 2022), the spatial scale has been 
demonstrated as an important mediator that could alter the 
effects of biodiversity loss and compositional change on for-
est biomass dynamics (Craven et al. 2020; Gonzalez et al. 
2020). Most empirical studies have focused on either one 
or a comparative spatial scale, such as local vs regional or 
neighborhood vs community (Bond and Chase 2002; Cos-
tanza et al. 2007; Ni et al. 2007; Luo et al. 2019a). Scal-
ing up biodiversity–productivity relationships over various 
spatial scales has attracted recent attention (Chisholm et al. 
2013; Luo et al. 2019b; Barry et al. 2021). Using a wider 
range of spatial scales, predictions for the landscape-scale 
consequences of biodiversity loss and community composi-
tional change may improve (Thompson et al. 2018; Qiu and 
Cardinale 2020).

In addition, more empirical research is needed regard-
ing the dimension-dependent effects of biodiversity loss and 
community compositional change on biomass dynamics in 
natural ecosystems (e.g., functional or phylogenetic; Naeem 
et al. 2016). Biodiversity and community composition are 
inherently multidimensional with taxonomic, functional, 
and phylogenetic characteristics, emphasizing species iden-
tity, traits, and evolutionary history, respectively (Liu et al. 
2015; Stevens and Gavilanez 2015). In addition, biodiver-
sity's functional and phylogenetic dimensions might be bet-
ter predictors than its taxonomic dimensions (e.g., species 
richness) in explaining the variation in biomass production 
(Cadotte et al. 2009; Flynn et al. 2011). Given that the differ-
ent dimensions of biodiversity and community composition 
are, in general interdependent (Lyashevska and Farnsworth 
2012), unidimensional approaches (e.g., only species rich-
ness) might overestimate or underestimate the impacts of 
biodiversity loss and community compositional change on 
biomass dynamics (Liu et al. 2015). Avoiding such biases 
requires quantifying different dimensions of biodiversity 
and community composition and assessing their effects on 
ecosystem functions, which remain poorly investigated (Le 
Bagousse-Pinguet et al. 2019).

In the current study, we generated a continuous experi-
mental gradient of spatial scale (i.e., a series of circular 
quadrats ranging from 2 to 30 m in radius) in a 20-ha 
Forest Dynamic Plot in Dinghushan, China, to understand 
the critical roles of biodiversity and community structure 
in ecosystem functioning across spatial scales in the face 
of global climate change. Within each quadrat, we moni-
tored changes in aboveground biomass (i.e., Δbiomass), 

multiple dimensions of biodiversity (i.e., Δbiodiversity 
for richness, Shannon diversity, functional, and phyloge-
netic), and community composition (i.e., β-diversity for 
taxonomic, functional, and phylogenetic) over 10 years.

In our system, we make a series of predictions. Firstly, 
Δbiodiversity and β-diversity will drop steeply and then 
decelerate with spatial scale due mostly to environmental 
changes (Fig. 1a; Keil et al. 2018; Pimiento et al. 2020). 
Species–area relationships typically show that biodiversity 
rises steeply and then decelerates with increasing spatial 
scale in natural ecosystems (Arrhenius 1921; Gleason 
1922), primarily due to the presence of common species 
at small scales and an increase in rare species at larger 
scales (Tjørve et al. 2008). Moreover, we expect scale-
dependent mismatches among the different dimensions 
of Δbiodiversity and β-diversity (Fig.  1a; Wang et  al. 
2013; Mirochnitchenko et al. 2021). For example, spe-
cies richness and Shannon diversity can have a decreasing 
correlation with spatial scale (Zhang et al. 2012). Conse-
quently, the influences of Δbiodiversity and β-diversity on 
Δbiomass will vary with spatial scale and among different 
dimensions (Qiao et al. 2021).

Secondly, we predict Δbiodiversity and β-diversity will 
have weak or no relationships with Δbiomass at small 
spatial scales (Fig. 1b). On the one hand, high correla-
tions among their different dimensions are probably due 
to low species redundancy resulting from the intense com-
petition (i.e., limiting similarity hypothesis; Macarthur 
and Levins 1967), implying that their influences might 
be consistently weak or strong. On the other hand, high 
dominance means that the majority of Δbiomass could be 
ascribed to one or a few dominant species, i.e., sampling 
or selection effects (Loreau and Hector 2001). However, 
due to high species turnover, those dominant species might 
over-yield or under-yield (i.e., through positive or negative 
selection), thus potentially resulting in neutral or weak 
relationships between Δbiomass and Δbiodiversity or 
β-diversity (Smith and Knapp 2003; Sasaki and Lauen-
roth 2011; Lohbeck et al. 2016). With increased spatial 
scale, Δbiodiversity and β-diversity will have stronger 
relationships with Δbiomass probably due to increasing 
complementarity effects (Isbell et al. 2018). That is, at 
large spatial scales, the higher number of lost species and 
stronger compositional shift means a greater variety of 
resources (e.g., water, nutrients, or pollinators) cannot be 
fully reutilized, thus resulting in a higher decline in bio-
mass (Thompson et al. 2021). Hence, we expect that the 
dimensions of Δbiodiversity and β-diversity more related 
to resource utilization (e.g., functional) and species’ rar-
ity (e.g., Shannon diversity or taxonomic β-diversity) will 
have stronger relationships with Δbiomass at large spatial 
scales (Fig. 1b; Qiao et al. 2021).
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Fig. 1  Conceptual diagram outlining the changes in the multiple 
dimensions of biodiversity (i.e., Δbiodiversity) and community com-
position (i.e., β-diversity) along a gradient of spatial scale (a) and 
their potential effects on net biomass change (i.e., Δbiomass) with 

spatial scales (b). The different colors in the first plot represent the 
different dimensions of Δbiodiversity and β-diversity including taxo-
nomic, phylogenetic, and functional. The different colors in the sec-
ond plot represent a gradient of spatial scale. (Color figure online)

Fig. 2  Dinghushan Mountain in China (a), the spatial point patterns 
of species in a subtropical forest plot of 20 hectares in Dinghushan 
Mountain in 2005 (b) and 2015 (c), and the difference in the num-
ber of individuals (i.e., Δnumber of individuals) sampled across an 
experimental gradient of spatial scale in both years (d). The species 

in the spatial point patterns are ranked by their abundance and repre-
sented by different colors. The points, short, and long bars represent 
the median values, 75%, and 95% CIs of the Δnumber of individuals 
randomly sampled 10,000 times in both years
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Methods

Study site

Our study site is a subtropical long-term forest plot of 20 ha 
(i.e., 400 m × 500 m) located in the Dinghushan Nature 
Reserve (23°09′21″–23°11′30″ N, 112°30′39″–112°33′41″ 
E), Guangdong Province, China (Fig. 2a). The vegetation 
in the plot is a natural mature evergreen broadleaved for-
est, which has been well-protected for over 400 years (Li 
et al. 2019a). The climate is a typical subtropical monsoon, 
with a mean annual temperature of about 21.0 °C. The 
annual precipitation is about 1927 mm and mainly distrib-
utes between April and September. The soil is classified as 
red and yellow with a small amount of humus according to 
the soil classification of China (Gong 1999). The common 
plants include Aidia canthioides, Cryptocarya concinna, 
Syzygium rehderianum, and Blastus cochinchinensis.

The forest plot was established in November 2004 and 
then surveyed in 2005 and 2015. In each survey, all liv-
ing and standing woody vegetation (i.e., trees and shrubs) 
with a diameter at breast height (DBH) > 1 cm were iden-
tified as species. Their height and DBH were measured, 
and their positions were recorded. After standardizing spe-
cies names with the Flora of China (http:// www. iplant. cn) 
and The Plant List (http:// www. thepl antli st. org), the first 
survey recorded a total of 71,452 individuals, belonging 
to 193 species, 115 genera, and 56 families; the second 
survey recorded a total of 80,283 individuals, belonging to 
174 species, 105 genera, and 53 families. The two surveys 
reflected extreme climate fluctuations, including the cold 
and hot spells in 2008 and a prolonged drought from 2010 
to 2013 (Li et al. 2021). As a result, the plot underwent 
an evident shift in species composition and distribution 
(Fig. 2b, c).

Random sampling

To create a continuous gradient of spatial scale, we set a 
series of circular quadrats of different radii ranging from 
2 to 30 m (size interval as 1-m), each having thirty rep-
licates randomly arranged in the whole plot. The mini-
mum radius was set to avoid too many empty quadrats, 
and the maximum radius was established to guarantee that 
replicates fell wholly within the plot. To ensure the ran-
dom and non-overlapped distribution of the replicates, we 
used the function “rmh” in the R package spatstat (Bad-
deley and Turner 2005) to assume that they follow a Gibbs 
hard-core point process (Ratcliffe et al. 2015). Within 
each replicate, species composition in the two surveys 
was recorded, and aboveground biomass production was 

estimated. Averagely, the number of individuals in each 
size of sampling quadrat ranged from 4 to 1018 across the 
whole gradient of spatial scale and was generally similar 
between the two surveys (Fig. 2d).

Net biomass change and its components

For each individual recorded in replicate, we estimated its 
aboveground biomass using the function “computeAGB” 
in the R package BIOMASS (Réjou‐Méchain et al. 2017) 
based on the field measurements (e.g., dbh, height, species 
identity). Because of the massive missing plant height data, 
aboveground biomass was estimated using an improved allo-
metric equation provided by Chave et al. (2014), i.e.,

where E is a measure of environmental stress, D is DBH 
(cm), and WD is wood density (g/cm3). Wood density was 
estimated for all the species recorded except 110 species 
using the function “getWoodDensity” in the R package 
BIOMASS (Réjou‐Méchain et al. 2017). The estimation 
of aboveground biomass was summed over all the indi-
viduals recorded in a quadrat as aboveground community 
biomass (Mg). Then, the net change of aboveground com-
munity biomass in a quadrat between the two surveys (i.e., 
Δbiomass2015–2005) was calculated and then partitioned into 
the amounts of decreased and increased biomass as the 
following:

Molecular phylogeny

For the species recorded, we constructed a molecular 
phylogeny using three different universal DNA barcodes, 
including rbcL, matK, and ITS, since their combination 
can provide substantial discriminatory power for the close-
related species in our system (Liu et al. 2019a). After extrac-
tion and sequencing (Jin et al. 2022), rbcL and matK were 
aligned using the MAFFT (Version 7; Katoh and Standley 
2013). ITS sequences were aligned separately by order or 
closely related orders, then combined and edited manually 
in Geneious R11.1.5 (Biomatters Ltd., Auckland, New Zea-
land). The three alignments were concatenated to build a 
super-matrix, and then a maximum likelihood molecular 
phylogeny was constructed using RAxML (Version 8.2.12, 
Stamatakis 2014). Two gymnosperm species (Nageia fleuryi 
and Pinus massoniana) were chosen as outgroups. Using the 
inferred divergence times in Magallón et al. (2015) as sec-
ondary calibrations, the phylogeny was transformed into an 

(1)
AGB = e(−2.024−0.896×E+0.920×logWD+2.795×logD−0.0461×(logD)2),

(2)
Δbiomass2015−2005 = biomass2015 − biomass2005

= increment + decrement.

http://www.iplant.cn
http://www.theplantlist.org
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ultra-metric tree by automatically estimating the divergence 
time in treePL (Smith and O’Meara 2012). Then the 1000 
bootstrap replicates of the super-matrix were run to evaluate 
node support for the phylogenetic topology constructed. In 
our molecular phylogeny, the average node support (median) 
is 100%, and the proportion of nodes with a high support 
rate (≥ 80%) is greater than 75% (Appendix: Fig. 6).

Functional traits

For the species recorded, we assembled seventeen differ-
ent functional traits important for the aboveground biomass 
production of forests. Those traits included leaf area  (cm2), 
leaf dry matter content (%), specific leaf area  (cm2  g−1), 
petiole length (m), petiole density (g  cm−2), petiole dry mat-
ter content (mg  g−1), leaf nitrogen content (mg  g−1), leaf 
phosphorus content (mg  g−1), photosynthetic nitrogen use 
efficiency (µmol  mol−1  s−1), photosynthetic phosphorus use 
efficiency (mmol  mol−1  s−1), leaf chlorophyll content (µg 
 l−1), stem conductance (kg  m−1  MPa−1  s−1), leaf conduct-
ance  (10–4 kg  m−1  MPa−1  s−1), stomatal conductance per 
unit area (mmol  m−2  s−1), stomatal conductance per unit 
mass (mmol  g−1  s−1), instantaneous water use efficiency 
(µmol  mol−1), and leaf expansion loss point (Mpa) (Jones 
et al. 2015; Li et al. 2015a). Part of the trait data was assem-
bled from literature (Liu et al. 2019b; Zhang et al. 2019) 
and characterized based on the TRY database (Kattge et al. 
2011). The remaining trait data were estimated using Multi-
ple Imputations with Chained Equations (MICE), as imple-
mented in the R package mice (van Buuren and Groothuis-
Oudshoorn 2011).

Biodiversity loss and community compositional 
change

For a replicate of sampling quadrat at each given scale, we 
estimated its biodiversity loss between the two surveys as 
the following:

where i represents one dimension of biodiversity. The mul-
tiple dimensions of biodiversity were calculated, including 
species richness (i.e., number of species; S), Shannon’s 
diversity ( H′ ), and functional and phylogenetic diversity. 
Shannon’s diversity was calculated following

(3)Δbiodiversityi = biodiversityi,2015 − biodiversityi,2005

(4)H� =

S∑

i=1

ni

N
log

(ni
N

)

where N is the number of individuals, S is the number of 
species, and ni is the abundance of species i . Functional 
diversity was measured as the mean distance of each spe-
cies to the abundance-weighted centroid of the multivari-
ate space composed of the functional traits considered (i.e., 
functional dispersion abbreviated as FDis; Laliberte and 
Legendre 2010), using the function “dbFD” in the R package 
FD (Laliberté et al. 2014). Phylogenetic diversity measures 
included three metrics: Faith’s PD, which sums the branch 
lengths that connect component species in a community 
(Faith 1992); abundance-weighted mean pairwise distance 
(MPD), which is the abundance-weighted phylogenetic dis-
tance separating all pairs of species in a community (Webb 
et al. 2002); and abundance-weighted mean nearest taxon 
distance (MNTD), which is the abundance-weighted phylo-
genetic distance separating a species with its closest relative 
in a community (Webb et al. 2002). The values of those 
phylogenetic diversity measures were calculated using the 
function “pd,” “mpd,” and “mntd” in the R package Picante 
(Kembel et al. 2010).

For a replicate of the sampling quadrat, we also esti-
mated the multiple dimensions of community compositional 
change between the two surveys (i.e., β-diversity), includ-
ing taxonomic, functional, and phylogenetic. Taxonomic 
β-diversity was calculated using the Bray–Curtis dissimi-
larity index (Bray and Curtis 1957) following

where xi,2005 and xi,2015 is the abundance of species i in 2005 
and 2015, respectively, and S is the total number of species 
in the two surveys. For both functional and phylogenetic 
β-diversity, we used an abundance-weighted dissimilarity 
index, i.e.,

where n is the number of branches in a dendrogram, bi is the 
length of branch i , 2005i and 2015i are the number of indi-
viduals that descend from branch i in 2005 and 2015, respec-
tively, 2005T and 2015T are the total numbers of individuals 
in 2005 and 2015, respectively. n′ is the number of different 
individuals in the two surveys, dj is the distance from the 
root to individual j , while 2005j and 2015j are the number 
of times the individual j observed in 2005 and 2015, respec-
tively (Lozupone et al. 2007). For functional β-diversity, the 
dendrogram was constructed using hierarchical clustering 

(5)D2005,2015 =

∑S

i=1
�xi,2005 − xi,2015�

∑S

i=1

�
xi,2005 + xi,2015

�

(6)W − UniFrac =

∑n

i
bi ×

���
2005i

2005T
−

2015i

2015T

���
∑n�

j
dj ×

���
2005j

2005T
+

2015j

2015T

���



 European Journal of Forest Research

1 3

with the Euclidean distance matrix of the standardized 
functional traits considered (Petchey and Gaston 2007). For 
phylogenetic β-diversity, the dendrogram was the molecu-
lar phylogeny constructed. The dimensions selected were 
majorly weighted by abundance because we assumed that 
the abundance-weighted dimensions would have stronger 
relationships with biomass than their non-weighted versions 
in natural ecosystems. Some widely used but non-weighted 
dimensions, such as species richness and Faith’s PD, were 
also included to compare the current study with previous 
findings (Flynn et al. 2011).

Statistical analysis

For each size of the sampling quadrat, we determined the 
most parsimonious relationships of Δbiomass and its com-
ponents (i.e., increment and decrement) as a function of 
both Δbiodiversity and β-diversity. To do this, we first con-
structed a series of linear regression models to include all 
the combinations of the different dimensions calculated for 
both Δbiodiversity and β-diversity. That is,

where Δbiomassi,l represents the net change of aboveground 
biomass or its components in a replicate l , Δbiodiversityj,l 
and β - diversityk,l represent a measure of Δbiodiversity and 
β-diversity in a replicate l , respectively, aj and bk represent 
the regression coefficients of Δbiodiversity and β-diversity, 
respectively. For those dimensions not included, aj and bk 
were set to zero. Because of the high correlations among 
those dimensions (Appendix: Fig. 7; |Spearman’s �|> 0.3), 
any multiple regression model with the variance inflation 
factor (VIF) of any parameter being greater than three was 
excluded to avoid biases in coefficient estimates (Cade 
2015). At the same time, a null model, i.e., an intercept-
only model (e.g., Δbiomassi ∼ 1 ), was constructed. Akai-
ke’s information criterion corrected for small sample sizes 
 (AICc; Burnham and Anderson 2002, 2004) was calculated 
for each model that remained, and relatively better-ranked 
models were selected (i.e., AICcmodeli

− AICcnull < −2 ). If 
the selected models were not empty, the top-ranked model 

(7)

Δbiomassi,l ∼

6∑

j=1

aj × Δbiodiversityj,l +

3∑

k=1

bk × � − diversityk,l

Fig. 3  Ten-year changes in aboveground biomass and its components 
(i.e., Δbiomass, increment, and decrement; a–c), the multiple dimen-
sions of biodiversity loss (i.e., Δbiodiversity; d–i), and community 
compositional change (i.e., β-diversity; j–l) along a spatial gradient 
within a natural subtropical forest plot. The red points, blue, and gray 
bars represent the median values, 75%, and 95% CIs of the variables 
randomly sampled 10,000 times, respectively. The different dimen-

sions of Δbiodiversity include changes in species richness ( ΔS ), 
Shannon’s diversity ( ΔH� ), mean pairwise distance ( ΔMPD ), mean 
nearest taxon distance ( ΔMNTD ), functional dispersion ( ΔFDis ). 
Those of β-diversity include taxonomic ( �taxonomic ), phylogenetic 
( �phylogenetic ), and functional β-diversity ( �functional ). (Color figure 
online)
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with the lowest  AICc was used as the most parsimonious 
model, and then the standardized coefficient ( �n∕SEn ) of 
each term was calculated. Meanwhile, the percentage of 
deviance explained in the response variable (De) was used 
to measure the model’s goodness of fit. Before model fit-
ting, all variables were standardized (i.e., mean/standard 
deviation). Because our models did not include spatial and 
environmental factors (e.g., soil nutrients), which might bias 
the results of the multi-model inference and the estimation 
of standardized coefficients (Liang 2012), to minimize their 
confounding effects, we repeated above random sampling, 
the associated calculation of Δbiomass, Δbiodiversity, and 
β-diversity, and statistical analyses 10,000 times. The num-
ber of times the most parsimonious model identified was not 
the null model was counted and then divided by 10,000 as 
the model probability of Δbiodiversity and β-diversity. Then, 
for a measure of Δbiodiversity or β-diversity, the median 
and the confidence interval (95% CI) of its estimated stand-
ardized coefficients were calculated. The median coefficient 
was considered significant when its 95% CI did not contain 

zero. All data analyses were performed in R 3.5.3 (R Core 
Team 2015).

Results

With the increase of quadrat radius in the surveys, above-
ground community biomass increased at an accelerating rate, 
while MNTD decreased and other measures of biodiversity 
increased at decelerating rates (Appendix: Figs. 8, 9). Consist-
ently, Δbiomass and biomass decrement decreased, whereas 
biomass increment increased at accelerating rates (Fig. 3a–c). 
Δbiodiversity and β-diversity decreased at decelerating rates 
with quadrat radius; however, ΔFDi seemed to be invariant, 
and ΔMNTD tended to be positive and increase with quadrat 
radius at small spatial scales (Fig. 3d–l). Notably, only at large 
spatial scales, Δbiomass, its components, and Δbiodiversity 
were significantly negative.

For Δbiomass and its components, the model probabilities 
of Δbiodiversity and β-diversity were generally low, but all 
tended to increase with quadrat radius (Fig. 4a–c). Δbiomass 

Fig. 4  Model probability of net biomass change (i.e., Δbiomass; a) 
and its components (increment and decrement; b, c) as a function of 
biodiversity loss (i.e., Δbiodiversity) or community compositional 
change (i.e., β-diversity) and the associated percentage of deviance 
explained (i.e., De) in the dependent variable (d–f) along a spatial 
gradient within a natural subtropical forest plot. Δbiomass and its 
components were calculated as 10-year changes in aboveground bio-
mass, the amounts of increased, and decreased biomass, respectively. 

Model probability was calculated as the proportion of the most parsi-
monious model identified for Δbiomass and its components includ-
ing Δbiodiversity or β-diversity or both over 10,000 random sam-
ples. The points in plots d-f represent the median values of the De 
values of the most parsimonious models identified for Δbiomass and 
its components including Δbiodiversity or β-diversity or both over 
10,000 random samples
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and decrement had similar distributions of model probabil-
ity across the spatial gradient, of which the models including 
both Δbiodiversity and β-diversity accounted for the major 
occurrences and increasing tendencies. In contrast, the bio-
mass increment had an increasing trend mainly from mod-
els including only Δbiodiversity measures. Nevertheless, 
deviance explained (i.e., De value) of the Δbiodiversity and 
β-diversity models identified for Δbiomass and its components 
all declined and then generally stabilized with quadrat radius 
(Fig. 4d–f). Notably, the models including both Δbiodiversity 
and β-diversity measures tended to obtain the highest De 
values.

Of the measures of Δbiodiversity and β-diversity, ΔMNTD, 
ΔFDis, and taxonomic β-diversity showed significant effects 
on Δbiomass, however, only at large spatial scales (Fig. 5). 
Correspondingly, the effects of ΔFDis were consistently nega-
tive for both biomass increment and decrement, whereas that 
of taxonomic β-diversity was only significantly negative for 
biomass decrement. At the same time, ΔH� showed significant 

but opposite effects on biomass increment and decrement at 
large spatial scales, which aligns with its neutral effects on 
Δbiomass over the whole spatial gradient.

Discussion

Biodiversity loss and community compositional change 
driven by global environmental change are suspected to 
impact the biomass production of natural communities 
differently over a continuum of spatial scales (Mori et al. 
2018; Gonzalez et  al. 2020; Qiu and Cardinale 2020), 
although hitherto empirical evidence is lacking. Previous 
studies are mainly conducted at one or few discrete spatial 
scales using relatively small-scale experiments (Bond and 
Chase 2002; Li et al. 2019b; Luo et al. 2019a) and are often 
focused on one dimension of biodiversity and community 
structure primarily on the taxonomic level (Chisholm et al. 
2013; Barry et al. 2021). Our study investigates the influ-
ences of both Δbiodiversity and β-diversity on Δbiomass 

Fig. 5  Standardized coefficients of biodiversity loss (i.e., 
Δbiodiversity) and community compositional change (i.e., 
β-diversity) on net biomass change (i.e., Δbiomass) and its com-
ponents (i.e., increment and decrement) along a spatial gradient 
within a natural subtropical forest plot. The different dimensions of 
Δbiodiversity include changes in species richness ( ΔS ), Shannon’s 
diversity ( ΔH� ), mean pairwise distance ( ΔMPD ), mean nearest 
taxon distance ( ΔMNTD ), functional dispersion ( ΔFDis ). Those of 
β-diversity include taxonomic ( �taxonomic ), phylogenetic ( �phylogenetic ), 
and functional β-diversity ( �functional ). Δbiomass and its compo-
nents were calculated as 10-year changes in aboveground biomass, 

the amounts of increased, and decreased biomass, respectively. The 
points represent the median values of the standardized coefficient 
estimated for each predictor included in the most parsimonious 
models identified for Δbiomass and its components over 10,000 ran-
dom samples. A solid point represents the 95% CI of the standard-
ized coefficient estimated for a predictor in 10,000 random samples 
excludes zero (i.e., significant effect). The size of a point represents 
the number of occurrences of a predictor present in the most parsimo-
nious models identified for Δbiomass and its components in 10,000 
random samples
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and its components over a continuous gradient of spatial 
scales and disentangles the relative importance of multiple 
dimensions of biodiversity and community structure in a 
natural forest ecosystem. Our results showed that (1) over 
a 10-year study period, which included dramatic environ-
mental changes, Δbiomass, Δbiodiversity, and β-diversity 
declined with decreasing spatial scale; (2) significant effects 
of Δbiodiversity and β-diversity on Δbiomass occurred at 
larger spatial scales; and (3) ΔMNTD, ΔFDis, and taxo-
nomic β-diversity were shown to be relatively better predic-
tors (as compared to other dimensions considered here) for 
Δbiomass at larger spatial scales. Below, we discuss these 
findings and their relative importance for assessing biomass 
production in natural ecosystems.

Within our forest system, Δbiodiversity tended to be 
negative and generally decreased with quadrat radius, sug-
gesting the scale dependency of plant biodiversity responses 
to environmental changes (Lan et al. 2015; Li et al. 2015b). 
At small spatial scales, all Δbiodiversity measures were 
insignificant, which agrees with previous studies (Vellend 
et al. 2013; Dornelas et al. 2014). Particularly, ΔMNTD 
tended to be positive and increase with quadrat radius, 
indicating strong interspecific competition at small spatial 
scales (Webb et al. 2002), where the colonization of spe-
cies dissimilar to the dominant species in a community may 
help maintain biodiversity at small spatial scales (Chesson 
2000). At larger spatial scales, all Δbiodiversity measures 
were significantly negative (Gonzalez et al. 2016), indicating 
that species immigration cannot offset species loss, probably 
because the lost species were rare (LaManna et al. 2016; 
Obst et al. 2018). Compared with common species, rare spe-
cies could be more difficult to replenish since they might 
have also been lost at larger spatial scales. On the other hand, 
ΔFDis did not change across spatial scales, indicating that 
functional diversity is not scale-dependent (Niu et al. 2020).

Our results also showed that comparing across different 
dimensions of biodiversity, H′ , MPD, MNTD, and FDis 
were more stable than S and PD at larger spatial scales. 
These results suggest that at larger spatial scales, new spe-
cies added to or removed from a community contribute little 
to the change in its overall biodiversity, particularly when 
considering Shannon diversity, functional, and phylogenetic 
diversity. Consistent with Δbiodiversity, we also found that 
β-diversity generally decreased with decreasing spatial scale; 
community composition was more similar and more stable 
at larger spatial scales (also see Zhou et al. 2018). These 
results can draw several implications: First, similar species 
can coexist at larger spatial scales, probably due to high 
environmental heterogeneity (e.g., soil nutrients, symbionts, 

pathogens; Yackulic 2017). Second, species redundancy can 
be high at large spatial scales (Kondratyeva et al. 2020). 
Redundant species are likely to be removed by disturbances 
(e.g., drought) because they are often rare in terms of mean 
abundance (Jain et al. 2014) and can be removed by both 
abiotic conditions and biotic interactions (e.g., competition; 
McLean et al. 2019).

In contrast with Δbiodiversity and β-diversity, Δbiomass 
decreased with quadrat radius at an accelerating rate. Above-
ground community biomass might remain unchanged at 
small spatial scales with considerable biodiversity loss and 
community compositional shift. In contrast, similar biodi-
versity loss and community compositional change might 
occur at larger scales with substantially greater declines in 
aboveground community biomass. These contrasting results 
may imply that overall Δbiomass might have weak relation-
ships with both Δbiodiversity and β-diversity across the 
whole spatial scale gradient, which is supported by their 
generally low model probabilities, alluding to the need 
for further partitioning of Δbiomass into different compo-
nents to infer their mechanistic responses better. Thus, for 
Δbiodiversity and β-diversity, their weak relationships with 
Δbiomass may be attributed to the following mechanisms, 
which should be more fully explored in future studies: (I) 
they have no or a weak relationship with all the components 
of biomass (i.e., increment and decrement); (II) they have 
a strong relationship with all the components of biomass, 
but with little contribution to overall Δbiomass; (III) they 
have strong but opposite relationship with different biomass 
components that are cancelled out at the community level.

In our system, at small spatial scales, the low model prob-
abilities of Δbiodiversity and β-diversity occurred for both 
increment and decrement (i.e., mechanism I). This result is 
not surprising because, on the one hand, increment and dec-
rement at small spatial scales might be mainly determined by 
one or several dominant species (Smith and Knapp 2003). 
On the other hand, Δbiodiversity and β-diversity might 
have close connections with species immigration at small 
spatial scales (Liu and Zhou 2011); however, immigrated 
species could contribute little to increment due to intense 
competition, limited resources, and delayed responses (i.e., 
mechanism II) (Ratcliffe et al. 2015). With the increase 
of spatial scale, the model probabilities of Δbiodiversity 
and β-diversity increased for both increment and decre-
ment, especially the former. Nonetheless, in our system, 
the increment was generally lower than the decrement in 
absolute value, especially at large spatial scales. Moreover, 
Δbiodiversity and β-diversity could have opposite effects on 
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increment and decrement at large spatial scales (e.g., ΔH� ; 
i.e., mechanism III).

In our system, β-diversity had a lower model probability 
than Δbiodiversity, not only across the whole gradient but 
also across Δbiomass and its components. Compared with 
Δbiodiversity, β-diversity is often assumed to be of equal or 
even greater importance for Δbiomass (Hector et al. 2011; 
Bowker et al. 2021), especially when dominant species 
mainly drive β-diversity (Dai et al. 2018). However, this is 
not the case in our study, especially at large spatial scales. 
In line with model probability, the percentage of deviance 
explained in the response variable (De) was generally higher 
with Δbiodiversity. Surprisingly, for both Δbiodiversity and 
β-diversity, De generally decreased with quadrat radius. This 
trend might be associated with their decreasing variances 
with spatial scale because De, like the R-squared value (i.e., 
 R2), might increase with the range of continuous explanatory 
variables (Hector et al. 2011).

Nevertheless, our results found that the combination 
of Δbiodiversity and β-diversity outperformed single 
Δbiodiversity or β-diversity in terms of both model probabil-
ity and De, especially at large spatial scales. This result is 
consistent with the significant effects of both Δbiodiversity 
and β-diversity on Δbiomass and its components at large 
spatial scales, which generally agrees with previous research 
(Gonzalez et al. 2020). Such results highlight that on the one 
hand, biodiversity and community structure tend to be more 
important for ecosystem functions and services at larger 
scales (e.g., landscape) than those reported from small-scale 
experiments (Birkhofer et al. 2018; Reu et al. 2022). On the 
other hand, explaining maximum variation in productivity 
requires both biodiversity and community structure (Hodapp 
et al. 2016). However, it should be noted that the relative 
importance of the different dimensions of Δbiodiversity 
and β-diversity varied considerably for Δbiomass and its 
components, especially at large spatial scales. Particularly, 
the phylogenetic and functional dimensions of Δbiodiversity 
outperformed its taxonomic dimensions. By contrast, the 
taxonomic dimensions of β-diversity exceeded their phylo-
genetic and functional dimensions.

Regardless of the dimensions of Δbiodiversity and 
β-diversity, Δbiomass, and its components, the standardized 
coefficient converged around a similar absolute value (i.e., 
2.5). Several reasons might account for the convergences. 
First, we standardized all the variables before analysis for 
direct comparison along the spatial gradient. Second, taxo-
nomic β-diversity, which appeared to be the most influential 

predictor here, had strong and significant correlations with 
the other measures of Δbiodiversity and β-diversity at large 
spatial scales (Appendix: Fig.  7). Third, biotic homog-
enization in our system might somewhat drive the conver-
gences (Van Der Plas et al. 2016). Fourth, the dimensions 
of Δbiodiversity and β-diversity tend to not be included in 
the most parsimonious model if they have the standardized 
coefficients much above or below the converged values here. 
Although our results were generally in line with previous 
results (Lasky et al. 2014; Brun et al. 2019; Luo et al. 2019b; 
Abbasi et al. 2022), our study has the advantage of simul-
taneously considering all possible important dimensions of 
both Δbiodiversity and β-diversity. Indeed, in our system, 
the results of unidimensional approaches additionally found 
that ΔS and functional β-diversity also showed significant 
effects on Δbiomass at large spatial scales (Appendix: 
Fig. 10).

Conclusions

Although the relationships of Δbiomass as a function of 
Δbiodiversity and β-diversity were generally weak in our 
studied forest system, as also shown in previous studies (Liu 
et al. 2022), our results did support the scale-dependence of 
their relationships in natural forest ecosystems (Luo et al. 
2019b). Here, we detected nonlinear responses in the effects 
of Δbiodiversity and β-diversity on Δbiomass and its com-
ponents, benefitting from analyses across a continuous gradi-
ent of spatial scales. While these results generally agree with 
previous findings (Thompson et al. 2018; Qiu and Cardinale 
2020; Barry et al. 2021), our results show that the responses 
of Δbiomass and its components (i.e., increment vs decre-
ment) to Δbiodiversity and β-diversity varied considerably 
among their different dimensions, especially at larger spatial 
scales. These findings have important implications for forest 
conservation policy and management because optimizing 
the sustainability of ecosystem functions and services in the 
face of global environmental change requires a consideration 
of spatial scale, dimensions of biodiversity and community 
structure.

Appendix

See Figs. 6, 7, 8, 9, and 10.
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Fig. 6  A molecular phylogeny constructed using three universal DNA barcodes including rbcL, matK, and ITS. 1000 bootstrap analysis was per-
formed to evaluate the node support
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Fig. 7  Pairwise correlations between the different dimensions of 
biodiversity loss (i.e., Δbiodiversity) and community compositional 
shift (i.e., β-diversity) in 10 years along a spatial gradient within in 
a natural subtropical forest plot. The red points, blue, and gray bars 
represent the median values, 75%, and 95% CIs of the correlations 
in 10,000 random samplings, respectively. The asterisks indicate sig-
nificant correlations, i.e., the 95% CIs do not contain zero. The differ-

ent dimensions of Δbiodiversity include changes in species richness 
( ΔS ), Shannon’s diversity ( ΔH� ), mean pairwise distance ( ΔMPD ), 
mean nearest taxon distance ( ΔMNTD ), functional dispersion 
( ΔFDis ). Those of β-diversity include taxonomic ( �taxonomic ), phyloge-
netic ( �phylogenetic ), and functional β-diversity ( �functional ). (Color figure 
online)

Fig. 8  Distribution of aboveground biomass along a spatial gradi-
ent within a natural subtropical forest plot of Dinghushan Mountain. 
The red points, blue, and gray bars represent the median values, 75%, 
and 95% CIs of the biomass randomly sampled 10,000 times in the 

first survey (i.e., 2005), respectively. The pink points and the green 
and gray bars represent the median values, 75%, and 95% CIs of the 
biomass randomly sampled 10,000 times in the second survey (i.e., 
2015), respectively. (Color figure online)
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Fig. 9  Distribution of the different dimensions of biodiversity along a 
spatial gradient within a natural subtropical forest plot of Dinghushan 
Mountain. The red points, blue, and gray bars represent the median 
values, 75%, and 95% CIs of the variables randomly sampled 10,000 
times in the first survey (i.e., 2005), respectively. The pink points, 
green, and gray bars represent the median values, 75%, and 95% CIs 

of the variables randomly sampled 10,000 times in the second survey 
(i.e., 2015), respectively. The different dimensions for biodiversity 
included species richness (S), Shannon’s diversity ( H′ ), phylogenetic 
(PD, MPD, and MNTD), and functional diversity (FDis). (Color fig-
ure online)
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