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Abstract
Groundwater affects ecosystem services (ES) by altering critical zone ecohydrological and
biogeochemical processes. Previous research has demonstrated significant and nonlinear impacts
of shallow groundwater on ES regionally, but it remains unclear how groundwater affects ES at the
global scale and how such effects respond to environmental factors. Here, we investigated global
patterns of groundwater relationships with two ES indicators—net primary productivity (NPP)
and soil organic carbon (SOC)—and analyzed underlying factors that mediated groundwater
influences. We quantitatively compared multiple high-resolution (∼1 km) global datasets to
characterize water table depth (WTD), NPP and SOC, and performed spatial simultaneous
autoregressive modeling to test how selected predictors altered WTD-NPP and WTD-SOC
relationships. Our results show widespread significant WTD-NPP correlations (61.5% of all basins
globally) and WTD-SOC correlations (64.7% of basins globally). Negative WTD-NPP correlations,
in which NPP decreased with rising groundwater, were more common than positive correlations
(62.4% vs. 37.6%). However, positive WTD-SOC relationships, in which SOC increased with rising
groundwater, were slightly more common (53.1%) than negative relationships (46.9%). Climate
and land use (e.g., vegetation extent) were dominant factors mediating WTD-NPP and WTD-SOC
relationships, whereas topography, soil type and irrigation were also significant factors yet with
lesser effects. Climate also significantly constrained WTD-NPP and WTD-SOC relationships,
suggesting stronger WTD-NPP and WTD-SOC relationships with increasing temperature. Our
results highlight that the relationship of groundwater with ES such as NPP and SOC are spatially
extensive at the global scale and are likely to be susceptible to ongoing and future climate and
land-use changes.

1. Introduction

Groundwater is one of the most important freshwa-
ter resources, supporting agricultural, industrial and
domestic water use (Siebert et al 2010, Gleeson et al
2020). However, accelerated withdrawal and deple-
tion of groundwater, especially in arid and semi-
arid regions (Aeschbach-Hertig and Gleeson 2012),
challenges the long-term sustainability of freshwa-
ter resources (Wada et al 2012, de Graaf et al 2019,

Elshall et al 2020). By altering ecohydrological and
biogeochemical processes across the critical zone (i.e.,
a permeable layer of the Earth that extends from the
top of the canopy to the bottom of weathered bed-
rock), changes in the water table depth (WTD) can
cascade to affect a range of groundwater-dependent
or -mediated ecosystem services (ES). Past work has
revealed that groundwater impacts ES including bio-
mass production, nutrient cycling, streamflow regula-
tion and greenhouse gas mitigation (Danielopol et al
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2000, Qiu et al 2019, Zipper et al 2022a). However,
the spatial variations in the magnitude and direction
of interactions between groundwater and ES at global
scales remain poorly understood.

Primary productivity, as a fundamental indic-
ator for many provisioning ES (e.g., crop and tim-
ber production), is sensitive to precipitation and lim-
ited by water availability (Churkina et al 1999, Wu
et al 2011). In the sandy, humid forests of Wisconsin,
USA, shallow groundwater (i.e., the near-surface por-
tion of groundwater that can influence land surface
processes) (Fan 2015, Hare et al 2021) increases tree
growth by 63% compared to trees where ground-
water was below the rooting depth (RD) (Ciruzzi
and Loheide 2021). Nevertheless, groundwater effects
on productivity are not always positive and vary
in response to WTD and hydroclimatic conditions
(Zipper et al 2015, Qiu et al 2019). In the corn-
fields of south-centralWisconsin,USA, both biophys-
ical modeling and field experiments have revealed
that shallow groundwater can subsidize crop water
requirements and increase yield in dry years, while
exerting a yield penalty in wet years by waterlogging
and creating oxygen stress (Soylu et al 2014, Zipper
et al 2015, 2017). A more recent global groundwater–
vegetation analysis depicted complex positive or neg-
ative groundwater relationships with gross primary
productivity (GPP), which were spatially heterogen-
eous and seasonally dynamic, and varied with veget-
ation type and regional climate (Koirala et al 2017).
However, global-scale patterns of groundwater effects
on net primary productivity (NPP) remain unclear
andmay differ fromGPP because (1) soil evaporation
and plant transpiration are highly responsive to soil
moisture that is susceptible to groundwater influences
(Maxwell andCondon 2016) but not reflected inGPP;
and (2) the ratio of NPP toGPP is not always constant
spatially (Collalti and Prentice 2019) or temporally.
Thus, wemay expect that groundwater effects onNPP
may show a different pattern fromWTD-GPP covari-
ation as previously revealed across the globe.

Groundwater also significantly affects regulating
ES; for example, by influencing climate regulation
through changes in soil carbon storage (Qiu et al
2019). Many regional studies (e.g., in coastal wet-
lands and riparian zones) have found that WTD was
positively correlated with soil organic carbon (SOC)
(Lyon et al 2011, Guan et al 2021), indicating greater
SOC content with rising groundwater. In tropical
peatlands, mainly located in Southeast Asia, soil CO2

emissions can be amplified (i.e., leading to reduced
SOC) with increases in WTD due to enhanced soil
respiration and decomposition (Prananto et al 2020).
NPP also provides a net carbon input into ecosystems
(Chapin et al 2011), suggesting that positive ground-
water effects on NPP could lead to more organic car-
bon input into soils. However, rising groundwater
levels do not always improve SOC stocks and CO2

emissions are not consistently dependent on WTD
(Tiemeyer et al 2016). The net effects of groundwater
on SOC, especially at continental and global scales,
remain elusive and can be highly variable depend-
ing on complex interactions between WTD, WTD-
mediated soil abiotic and biotic conditions, C inputs
and outputs, and climatic conditions (Meersmans
et al 2011, Chen et al 2022).

In tandem, groundwater effects on ES can be pos-
itive or negative, highly variable spatially, and likely
differ by ES and mediated by environmental factors
(Qiu et al 2019, Wen et al 2020). In a global cli-
mate change context, multiple environmental factors
could interact to alter the dynamics of groundwater
as well as its long-term impacts on ES, including cli-
mate (Cuthbert et al 2019), soil texture (Qiu et al
2019, Huang et al 2021) and topographic factors such
as slope and elevation (Fan et al 2013, Maxwell and
Condon 2016). Yet the global interplay between these
potential drivers of WTD-ES relationships has not
been thoroughly investigated. Hence, in this paper,
we ask two main questions: (1) how does groundwa-
ter relate to NPP and SOC at the global scale? and
(2) how do environmental factors (i.e., climate, topo-
graphy, soil and land use/cover) mediate ground-
water depth’s relationships with NPP and SOC? To
answer these questions, we first developed a transfer-
rable analytical framework to quantify the relation-
ship between ES and groundwater availability (indic-
ated by WTD) (figures 1(a) and (b)), which can
be further mediated by environmental factors at the
global scale (figure 1(c)). We then empirically invest-
igated these relationships by quantitatively compar-
ing high-resolution global datasets of WTD and two
ES indicators (NPP and SOC) and an array of selected
environmental covariates.

2. Methods

2.1. Data sources and preprocessing
Our overall analytical procedure is shown in the flow-
chart (figure S1) and details of data sources are shown
in table 1. The WTD dataset and the RD dataset
were obtained from steady-state global model sim-
ulations (Fan et al 2013, 2017; figures S2 and S3).
The long-term NPP datasets were derived from the
global annual products of Collection 5.5 MOD17A3,
from theNumerical Terradynamic SimulationGroup,
University of Montana. To match the long-term aver-
age WTD dataset, we estimated long-term average
global NPP as the mean from 16 years (2000–2015)
of available NPP data for subsequent analyses (figure
S4). SOC stock datasets were obtained from the
SoilGrids250m (Hengl et al 2017). We calculated
SOC for one shallow soil layer from 0 to 15 cm depth
(i.e., SOC[0–15 cm] = SOC[0–5 cm] + SOC[5–15 cm]),
representative of the most active soil layer
(Jobbágy and Jackson 2000, Deng et al 2014),
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Figure 1. Conceptual framework illustrating hypothesized groundwater effects on ES and how external environmental factors
could mediate groundwater effects at the basin scale across the globe. In this study, the specific two ES indicators investigated are
NPP and SOC. (a) Illustrated hypothetical positive WTD-ES correlations at basin scale; (b) illustrated hypothetical negative
WTD-ES correlations at basin scale. In panels (a) and (b), red and blue points represent WTD and ES values for all the grid cells
within a basin, and the dash lines indicate the fitted WTD-ES relationships. As a result, each basin has a single correlation
coefficient (ρ) to denote the magnitude and direction of groundwater effects. (c) Scatter plots showing howWTD-ES coefficients
(i.e., y-axis) respond to environmental factors (i.e., x-axis). In panel (c), each point represents basin-level estimated ρ WTD-ES

values and the fitted dash line indicates predictor–coefficient correlation across all basins of the globe.

Table 1. Summary of global datasets used this study.

Variable Unit
Temporal
resolution

Spatial
resolution Source

WTD Meters below
land surface

Static 30 arcsec
(∼1 km)

Mechanistic model, calibrated by
1.6 million site observations
(Fan et al 2013)

RD Meters below
land surface

Static 30 arcsec
(∼1 km)

Mechanistic model, exhibiting the
same behavior as 2200 site
observations (Fan et al 2017)

NPP Kg C m2 Annual
average
(2000–2015)

1 km Satellite product from Numerical
Terradynamic Simulation Group
(http://files.ntsg.umt.edu/data/
NTSG_Products/MOD17/
GeoTIFF/MOD17A3/)

SOC stock t/ha Static 0.25 km Global observation-based model
(https://files.isric.org/soilgrids/
latest/data/; Hengl et al 2017)

Basin boundary
and environmental
factors

Details see
table 2

Static 15 arcsec
(∼500 m)

A standardized compendium of
hydro-environmental
information, the HydroBASINS
database (level 07 basins) (www.
hydrosheds.org/hydroatlas; Linke
et al 2019)
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and another deep soil layer from 0 to 200 depth
(i.e., SOC[0–200 cm] = SOC[0–5 cm] + SOC[5–15 cm] +
SOC[15–30 cm] + SOC[30–60 cm] + SOC[60–100 cm] +
SOC[100–200 cm]), indicative of the total soil carbon
pools (figure S5). All these global datasets were
from independent sources quantified with different
approaches and/or estimated using different vari-
ables, thus avoiding any potential circularity in the
analyses.

While these datasets represented the best-
available global products, there were some inherent
challenges linking and analyzing them together. First,
the underlying data used to generate these globally
gridded products were spatially heterogeneous, with
a bias towards more measurements and represent-
ation in temperate North America and Europe and
fewer in Africa, Asia and high latitudes, which could
cause inconsistent accuracy of WTD, NPP and SOC
datasets. Second, these datasets were from multiple
sources with different temporal coverages, making it
impossible to match them temporally under a same
time period. For example, the WTD and SOC data-
sets lumped together observations frommany years to
create a single static dataset, while mean annual NPPs
were calculated by averaging all the annual estimates
from 2000 to 2015. Given the spatial heterogeneity
and temporal asynchrony of datasets, our study aims
to depict the fundamental patterns of WTD-NPP
and WTD-SOC relationships with typical data that
reflected long-term natural conditions, rather than
an analysis of inter- or intra-year dynamics.

All datasets were adjusted to a consistent spatial
resolution of 30 arcsec (∼1 km). To filter out grid cells
that were not expected to be influenced by ground-
water, we calculated the gap distance between expec-
ted water table and RDs, since prior research has
revealed that groundwater exerted themost profound
impacts in shallow groundwater environments, but
produced negligible influences in deep groundwa-
ter areas (Orellana et al 2012, Fan et al 2013, Qiu
et al 2019). Here, we restrict our analysis to areas
where the gap distance was ⩽5 m as a conservat-
ive threshold (more details in the supplementary
information (SI)).

2.2. Spatial scale of analysis
The WTD-NPP and WTD-SOC relationships were
estimated at the basin scale, as defined using level 07
of the HydroBASINS dataset (figure S6) (Linke et al
2019). We used HydroBASINS since it was derived
from the same digital elevation model as the WTD
dataset (Fan et al 2013). Basins with areas <100 km2

or with <30 grid cells of WTD-NPP or WTD-SOC
data were filtered out to avoid unrobust results (see
the SI for details). After this screening, the finalWTD-
NPP dataset included 45 963 basins with an average
basin size of 2581.3 km2 and the final WTD-SOC
dataset included 50 001 basins with an average basin
size of 2585.2 km2.

2.3. EstimatingWTD-NPP andWTD-SOC
relationships
To address our first question, Spearman’s correla-
tion coefficient, ρ(x−y), was calculated to quantify
the basin-scale relationships between WTD(x) and
NPP/SOC(y) across the globe. Spearman’s correla-
tion is robust to data distribution and has been
previously used to estimate WTD-NPP and WTD-
SOC relationships (Mitchell et al 2014, Koirala et al
2017). When calculating ρ(x−y), the WTD value was
transformed into a negative value (-WTD) so that
interpretation of the ecohydrological implications of
WTD-NPP and WTD-SOC correlations was more
intuitive. Specifically, this meant that basins with
ρ > 0 had greater NPP or SOC when the water
table was closer to the land surface (i.e., positive
NPP/SOC response to shallow groundwater, as depic-
ted in figure 1(a)), and basins with ρ < 0 had greater
NPP or SOC when the water table was deeper from
the land surface (i.e., negative NPP/SOC response
to shallow groundwater, as depicted figure 1(b)).
We analyzed the distributions of Spearman’s cor-
relation, ρ(x−y), within 20◦-latitude bins and across
eight geographic regions as defined based on contin-
ents from HydroBASINS (excluding Greenland and
Antarctica). As noted above, the confidence of estim-
ated ρ(x−y) for each bin or geographic region was
subject to confidence in the underlying data. Varying
densities of WTD observations were used to generate
the global WTD input dataset (see details in section
S5 of the SI). Specifically, the confidence of simu-
lated WTD data in North America, Australia and
Europe could be higher than the confidence in Asia or
Africa (table S1), indicating that the confidence of our
derived WTD-NPP/SOC correlations may be simil-
arly higher in North America, Australia and Europe
than in other regions. In addition, the terrain and
landscape factors affected the confidence of the sim-
ulated global WTD dataset (Fan et al 2013), and thus
the confidence of our WTD-NPP/SOC correlations
may be greater in areas with flatter topography or
with more natural vegetation (see the SI for more
details).

2.4. Analyzing effects of environmental factors on
WTD-NPP andWTD-SOC relationships
In addressing our second question, to avoid mix-
ing correlationswith potentially differentmechanistic
reasons, we first separated all basins into positive and
negative subsets based on the sign of theirWTD-NPP
andWTD-SOC correlations. We then extracted from
HydroATLAS (Linke et al 2019) a total of 13 envir-
onmental factors that were hypothesized to mediate
groundwater influences on NPP and SOC (table 2).
All environmental factors were standardized before
statistical modeling and their correlation matrix was
constructed to identify and filter out highly collinear
factors.
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Table 2. Summary of potential environmental factors extracted from HydroATLAS (Linke et al 2019).

Environmental
factors Period Dimension Value range Unit Source data References

Elevation 2000–2010 Average −86–5800 Metres a.s.l. EarthEnv-
DEM90

Robinson et al
(2014)

Terrain slope 2000–2010 Average 0–34.5 Degrees EarthEnv-
DEM90

Robinson et al
(2014)

Air
temperature

1950–2000 Annual
average

−23.8–31.2 Degrees celsius WorldClim
v1.4

Hijmans et al
(2005)

Precipitation 1950–2000 Annual
average

0–7391 Millimetres WorldClim
v1.4

Hijmans et al
(2005)

Global aridity
index

1960–1990 Average 0–11.46 Unitless Global Aridity
Index

Zomer et al
(2008)

Irrigated
area extent
(equipped)

1900–2005 Spatial extent 0–99 Percent cover HID v1.0 Siebert et al
(2015)

Clay fraction in
soil

Average 2–43 Percent SoilGrids1km Hengl et al
(2014)

Silt fraction in
soil

Average 2–60 Percent SoilGrids1km Hengl et al
(2014)

Soil erosion Average 0–98 935 kg/hectare per
year

GloSEM v1.2 Borrelli et al
(2017)

Urban extent 2015 Spatial extent 0–100 Percent cover GHS S-MOD
v1.0 (2016)

Pesaresi and
Freire (2016)

Natural
vegetation
extent

2000 Spatial extent
by class

0–100 Percent cover GLC2000 Bartholomé
and Belward
(2005)

Semi-natural
vegetation
extent

2000 Spatial extent
by class

0–100 Percent cover GLC2000 Bartholomé
and Belward
(2005)

Cultivated area
extent

2000 Spatial extent
by class

0–100 Percent cover GLC2000 Bartholomé
and Belward
(2005)

We then built a fully linear model and used
Moran’s I to test for potential spatial autocorrel-
ation. Since our analyses revealed significant spa-
tial autocorrelations in residuals, we used the spatial
simultaneous autoregressive (SAR) model for spa-
tial regression, which was conducted with the spatial
dependence (i.e., spdep) package in R (Bivand 2022).
Depending on the volume of datasets and number of
predictors, we either used the ‘dredge’ function in the
Multi-Model Inference (i.e., MuMIn) package in R
(Barton 2009) or a consistent model selection process
(see the SI for details) to determine the optimal SAR
model for each dataset that had the lowest Akaike’s
information criteria values (Burnham and Anderson
2004).

Based on the results of optimal SAR models,
we then used scatterplots to visualize the responses
of WTD-NPP and WTD-SOC correlations to the
strongest mediating environmental factors. Since the
responses could be highly scattered, we used the
constraint line analysis to characterize the response
curves (Cade and Noon 2003, Qiao et al 2019, Liu
and Wu 2021). Specifically, adopted from Mills et al

(2006), the segmented quantile regression method
was used to generate response curves for the upper
and lower boundaries of each scatter plot to char-
acterize and visualize how environmental factors
affected the strongest WTD-NPP or WTD-SOC rela-
tionships (see the SI for details). All the analyses were
conducted in R 4.2.1 (R Core Team 2022).

3. Results

3.1. Global distribution ofWTD-NPP and
WTD-SOC relationships
Globally, 61.5% of all basins showed significant
correlations between simulated WTD and long-
term mean NPP, with Spearman’s correlation coef-
ficients ranging from −0.94 to 0.83. There were
more basins with negative WTD-NPP correlations
than positive correlations (62.4% vs. 37.6%, respect-
ively, out of basins with significant correlations;
figure 2(a)). Negative WTD-NPP correlations (indic-
ating decreasedNPP at shallowerWTD)were primar-
ily located in high northern latitudes and aggregated
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clusters in southern Asia, mid-southern Africa and
southern Australia. Positive WTD-NPP correlations
(indicating increased NPP at shallower WTD) were
mainly found in Central Europe, mid-western North
America, western and central Australia, and Southern
Africa. Median values and ranges of Spearman’s
correlation coefficients, ρ(WTD-NPP mean), slightly
decreased from the equator to the poles, with a sim-
ilar unimodal distribution for each latitude group,
but the distribution of ρ(WTD-NPP mean) in high latit-
udes showed overall smaller ranges (figure 2(b)). The
global pattern of WTD-NPP standard deviation cor-
relations and distribution of ρ(WTD-NPP standard deviation)

were broadly similar to those of WTD-NPP mean
correlations, though certain hotpots of positive or
negative correlations varied slightly (figure S7).

For SOC, 64.7% of all basins showed significant
correlations between WTD and SOC at the 0–15 cm
depth, ofwhich 53.1%were positive and 46.9%negat-
ive (figure 2(c)). The positiveWTD-SOC correlations
(indicating increased SOCwith shallowerWTD)were
most common in arid or seasonally dry regions with
diverse geography, such as mid-northern Europe,
southern India and mid-western North America, and
especially strong in the desert and steppe of Africa and
Australia (figures 2(c) and 3(b)). Basins with negative
WTD-SOC correlations (indicating decreased SOC
with shallower WTD) were mainly located in mid-
eastern and southern North America and southeast-
ern Asia. The distributions of Spearman’s correlation
coefficients, ρ(WTD-SOC 015) were symmetric with long
tails within each 20◦-latitude bin, except for 70◦–
90◦ North and 50◦–70◦ South (figure 2(d)). Median
values of the correlation coefficients were generally
around zero but decreased at lower latitudes in the
Southern Hemisphere. Hotspots of WTD-SOC cor-
relations in the deep soil layer (i.e., 0–200 cm) and
distribution patterns of ρ(WTD-SOC 0200) were similar to
the results of WTD-SOC relationships at the 0–15 cm
depth (SI section S9). However, there were more
positive WTD-SOC relationships at the 0–200 cm
soil depth, where 70.6% of all basins with signific-
antWTD-SOC correlations showed positive relation-
ships at the global scale (figure S7).

At regional to continental scales, most correla-
tion coefficient distributions were symmetric with
long tails spanning nearly the full −1.0–+1.0 range,
though distributions for the Arctic and Siberia have
smaller ranges than in other regions (figures 3 and
S8). However, as noted previously, empirical train-
ing and validation data for WTD, SOC and NPP
datasets were more limited in these regions, which
may affect accuracy and reduce confidence in our
findings for these geographic settings. ForWTD-NPP
correlations, coefficient medians of different regions
were consistently negative, aligning with the result
that negatively correlated basins were more common
across the globe (figure 3(a)). However, medians of

WTD-SOC correlation coefficients were essentially
zero except for Africa, which was slightly positive
(figure 3(b)).

3.2. Environmental factors mediatingWTD-NPP
andWTD-SOC relationships
Across the subset of basins with positive or neg-
ative WTD-NPP and WTD-SOC relationships, the
optimal SAR models showed pseudo R2 values ran-
ging from 0.19 to 0.29 (table S3). The pseudo R2 val-
ues ranged from 0.21 to 0.29 for WTD-NPP mean
and WTD-SOC (at 0–15 cm depth) relationships
(figure 4), while pseudo R2 values ranged from 0.19
to 0.29 for WTD-NPP standard deviation andWTD-
SOC (at 0–200 cm depth) relationships (figure S10).
Overall, climate factors were the dominant predict-
ors for WTD-NPP and WTD-SOC relationships at
the basin scale across the globe. By comparing all pre-
dictors in each optimal SAR model, the annual aver-
age air temperature showed the strongest influence on
mediating WTD-NPP/SOC relationships (figures 4
and S10). Specifically, the strength of positive correl-
ations between WTD vs. NPP and SOC responded
positively to temperature, indicating that at higher
temperatures, greater NPP and SOC were associated
with shallower WTD. On the other hand, for basins
with negative WTD-NPP and WTD-SOC relation-
ships, the strength of negative correlations respon-
ded negatively to temperature, meaning that at higher
temperatures, NPP and SOCweremore strongly neg-
atively related with WTD.

Segmented quantile regressions showed that
optimal constraint lines (i.e., those with the highest
R2) were quadratic for both NPP and SOC.
Constraint effects of the annual average air temperat-
ure on the potential maximum of positive WTD-
NPP/SOC correlations (i.e., points on the upper
constraint lines) first increased and then flattened
(figures 5(a), (d) and S11(a), (d)). Temperature con-
straint effects were symmetric for positive and neg-
ative WTD-NPP/SOC correlations, and the potential
minimum negative WTD-NPP and WTD-SOC coef-
ficients (i.e., points on the lower constraint lines)
first decrease and then flattened with rising temper-
ature. Collectively, these results showed that higher
temperatures tended to either boost positive effects
of groundwater or amplify negative groundwater
influences.

Most optimal SAR models for NPP and SOC also
contained annual average precipitation as a signific-
ant predictor. Precipitation was generally a weaker
predictor and showed opposite effects from temper-
ature; for instance, positive WTD-NPP/SOC rela-
tionships decreased in magnitude as precipitation
increases (figures 4 and S10). Such relationships were
consistent with the effects of the global aridity index
onWTD-NPP andWTD-SOC correlations (figures 4
and S10), with data points more clustered in the
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Figure 3. Distribution of correlation coefficients of (a) WTD-NPP mean and (b) WTD-SOC 015 across different continental
regions. WTD-SOC 015: WTD-SOC relationships at 0–15 cm soil depth. The number at the bottom of each violin plot represents
the number of basins included in the analysis for each continental region.

lower range of the global aridity index (figures 5(c),
(f) and S11(c), (f)). Segmented quantile regressions
showed that the potential maximum of positive
WTD-NPP/SOC correlations decreased, and poten-
tial minimum of negative WTD-NPP/SOC correla-
tions increased with rising precipitation (figures 5(b),
(e) and S11(b), (e)). Collectively, these results showed
that stronger precipitation or greater humidity both
weakened positive and negative groundwater effects
on NPP and SOC.

The correlations with land use differed between
WTD-NPP and WTD-SOC, and mainly reflected
vegetation extent including natural, semi-natural
vegetation and cultivated area (figures 4 and S10).
Specifically, the magnitude of positive WTD-NPP
correlations was negatively correlated with natural
vegetation extent, indicating that potential increases
in NPP associated with shallower WTD were lower

in settings with more natural vegetation cover.
Meanwhile, the magnitude of negative WTD-NPP
correlations were positively correlated with natural,
semi-natural and cultivated area extent, meaning that
negative WTD-NPP relationships were weaker in set-
tings with increasing extent of these cover types.
Consistently, both results suggested that groundwa-
ter relationships with NPP were weaker in basins
with higher vegetation extent. In contrast, mod-
els of WTD-SOC correlations contained fewer land
use factors with smaller effects. Overall, our res-
ults showed that increasing vegetation extent had the
potential to enhance positive groundwater effects,
while weakening negative groundwater effects on
SOC. Topographic factors, irrigated area extent, soil
erosion, and soil texture were not retained in the final
optimal SARmodels, withweak to negligible relation-
ships across all candidate models.
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Figure 4. Results of the optimal spatial SAR models. WTD-NPP mean: the optimal SAR models for the effects of environmental
factors on relationships between WTD and annual averaged NPP; WTD-SOC 015: the optimal SAR models for the effects of
environmental factors on WTD-SOC relationships at 0–15 cm depth. Sign ‘(+)’ represents results from analysis of a subset of
basins with positive WTD-NPP/SOC relationships and ‘(−)’ represents the results from the subset of negative WTD-NPP/SOC
relationships. Positive correlations are displayed in red and negative correlations in blue. The color intensity and the size of the
circles are proportional to correlation coefficients. The p-value of significant coefficient was shown as: p-value< 0.001: ∗∗∗,
<0.01: ∗∗,<0.05: ∗. Blank cells mean the predictor was not retained in the SAR model from model selection.

4. Discussion

4.1. Global pattern ofWTD-NPP andWTD-SOC
relationships
Groundwater depth variation was significantly cor-
related with NPP and SOC at the basin scale across
the globe, indicating a strong groundwater influ-
ence on these ES indicators. However, WTD-NPP
and WTD-SOC correlations were spatially hetero-
geneous and differed between NPP and SOC, indic-
ating that groundwater effects on NPP and SOC

are highly context-specific and mediated by envir-
onmental factors such as climate or ecohydrological
conditions. For instance, WTD can affect plant tran-
spiration and soil evaporation (Maxwell and Condon
2016), which could lead to effects on plant growth by
modifying root water availability (Soylu et al 2014).
Similar to global WTD-GPP correlations revealed in
Koirala et al (2017), we found that positive WTD-
NPP correlations were dominant in arid and semi-
arid regions (e.g., the Great Plains of North America,
the Eurasian Pontic–Caspian steppe; figure 2(a)),
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where shallow groundwater can provide a water sub-
sidy for enhancing productivity during dry periods
(Zipper et al 2015, Rizzo et al 2018). In contrast,
more negative WTD-NPP correlations were distrib-
uted in humid and water abundant regions (e.g.,
South Asia, northern Eurasia, figure 2(a)), where
increasing WTD could lead to oxygen stress from
waterlogging that, in turn, negatively affects NPP
(Wen et al 2020).

While we generally observed similar WTD-NPP
patterns to the WTD-GPP relationships found in
Koirala et al (2017), there are key distinctions between
WTD, NPP and GPP datasets used in our work as
well as our processing workflows for analyzingWTD-
ES relationships. To complement ourWTD-NPP ana-
lysis and better compare findings from Koirala et al
(2017), we conducted an additional global analysis
on WTD-GPP relationships using our datasets and
workflow (details and full results in section S10 in SI).
Essentially, when comparing WTD-NPP (figure 2)
and WTD-GPP (figure S9) patterns in our study, we
found primarily similar patterns globally but some
minor regional differences. For example, in eastern
NorthAmerica,WTD-NPP relationships weremostly
negative, whileWTD-GPP relations were mostly pos-
itive. Differences betweenWTD-NPP andWTD-GPP
relationships may be due to large-scale spatial vari-
ability of NPP:GPP ratios (Zhang et al 2009). This
work found that NPP:GPP ratios were low (from 0.45
to 0.6) in eastern Northern America, which could
cause differences in the WTD-NPP and WTD-GPP
correlations in this region. The strongWTD-NPP and
WTD-GPP coupling as we observed at the global scale
suggests that shallow groundwater may be a critical
explanatory factor for spatial heterogeneity of NPP:
GPP ratios by changing shallow soil moisture that
influences autotrophic respiration and CO2 fluxes
(Green et al 2019). However, more work would be
needed to investigate the strength of such interactions
at the global scale.

Comparing our WTD-GPP patterns with those
in Koirala et al (2017), we also found spatially sim-
ilar patterns with some notable regional differences.
For example, we found more basins with signific-
ant WTD-GPP correlations (either positive or negat-
ive) in our analysis, especially in the middle of North
America and some parts of southern Asia (figure S9).
These results suggest that the higher-resolution grid-
ded GPP datasets we used (∼1 km resolution, com-
pared to ∼10 km from Koirala et al 2017) can cap-
ture fine-scale ecosystem responses to WTD that can
be masked in coarser resolution analyses. Further,
Koirala et al (2017) did not investigate groundwater
effects on GPP above 60◦N, where we observed wide-
spread negative WTD-NPP and WTD-GPP relation-
ships in perennial cold and humid tundra regions at
highNorthernHemisphere latitudes (figures 2(a) and
(b)), though this finding needs to be cautiously inter-
preted due to the underrepresentation of empirical

observations for developing the WTD and NPP data-
sets for these high latitude regions. These results sug-
gest potential negative relationships between excess-
ive water availability caused by shallow groundwater
and plant productivity extend outside of temperate
environments where most research on the topic has
occurred (Liu et al 2020). Overall, our work comple-
ments and expands on the important past findings of
Koirala et al (2017).

As an important predictor of SOC, groundwa-
ter can significantly affect greenhouse gas fluxes
(Turetsky et al 2014) and influence the dynamics and
spatial variations in SOC. Our results revealed more
basins with positive WTD-SOC relationships at the
global scale, both for the most active soil layer (0–
15 cm, figure 2(c)) and deeper SOC pools (0–200 cm,
figure S7(c)). Such positive WTD-SOC correlations
were most common in arid or seasonally dry regions
with diverse geography, especially in the desert and
steppe areas in Africa (figures 2(c) and 3(b)). Based
on the dynamics observed in regional studies (Lyon
et al 2011, Guan et al 2021), the underlying mech-
anism for positive WTD-SOC may be that when
WTD is shallower, pore space oxygen deficiency due
to increased soil moisture inhibits decomposition
of organic matter, which causes SOC accumulation
(Callesen et al 2003). Moreover, groundwater could
regulate carbon exchange indirectly by regulating
nitrogen availability in the plant–soil system and a
shallower WTD may enhance CO2 inputs from GPP
over CO2 emissions by ecosystem respiration, ulti-
mately affecting SOC (Pohl et al 2015). Variations
in deep groundwater can still impact SOC in the
top soil layer (Poeplau et al 2020), through regu-
lating heterotrophic respiration (i.e., non-plant root
respiration, Prananto et al 2020). However, WTD
effects on different soil gas fluxes in previous stud-
ies have been inconsistent and nonlinear (Pohl et al
2015), or not even correlated (Tiemeyer et al 2016).
For example, in seasonally well-drained wetlands
without perennial frozen soil at high latitudes, an
elevated WTD potentially promoted soil CH4 emis-
sions and thus reduced SOC (Turetsky et al 2014),
which may explain negative WTD-SOC correlations
in some high-latitude Northern Hemisphere basins
(figure 2(c)).

4.2. Environmental factors mediatingWTD-NPP
andWTD-SOC relationships
Optimal SAR regression models demonstrated that
multiple environmental factors could mediate WTD-
NPP and WTD-SOC correlations, of which climate
and land use were the most notable factors (figures 4,
S10 and table S3).

Specifically, climate effects had a similar mediat-
ing role for bothWTD-NPP andWTD-SOC relation-
ships (figures 4 and S10). For basins with an annual
average air temperature >16 ◦C (thresholds of con-
straint effects were shown in table S4), a shallower
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WTD either promoted positive groundwater effects
on ES or amplified negative effects. These results sug-
gested that rising water tables subsidize crop pro-
duction by enhancing root water uptake to promote
NPP or SOC in warmer regions (Lowry and Loheide
2010, Jobbágy et al 2011), while in cooler settings
shallow groundwater introduced anaerobic effects to
reduce evapotranspiration, NPP and reduced SOC
accumulation (Soylu et al 2014). In contrast, for
basins with higher annual average precipitation (or
higher humidity), both positive and negative WTD-
NPP/SOC correlations were weakened. Since veget-
ation prefers to obtain water from the soil water
caused by recent precipitation infiltration or past
infiltration stored in deep soil (Miguez-Macho and
Fan 2021), increasing precipitation and air moisture
may diminish the relative importance of groundwa-
ter, but the extent of diminishment of groundwater
may differ among climate zones. It is noteworthy that
under high-temperature conditions, quadratic con-
straint regression lines turned from upward to flat
(figures 5(a), (d) and S11(a), (d)), indicating that
potential maximum groundwater effects on NPP and
SOC were limited and groundwater’s influences on
NPP and SOC may be lessened in future warmer cli-
mate conditions.

In contrast to climate, the effects of land use on
WTD-NPP andWTD-SOC relationships were differ-
ent between NPP and SOC, with mediating effects
from four types of land use extent (figure 4). Weaker
positive and negative WTD-NPP correlations were
associated with higher vegetation extent in basins.
Hence, vegetation extent showed similar mediating
effects on WTD-NPP relationships as precipitation,
potentially indicating that the extent of vegetation,
especially natural vegetation, may weaken ground-
water effects on NPP through increasing forest rain-
fall (Staal et al 2018) or enhancing rainfall inter-
ception (Porada et al 2018). For WTD-SOC correl-
ations, greater vegetation extent appeared to promote
positive groundwater effects in basins with a posit-
ive WTD-SOC correlation, while weakening negative
groundwater effects in basins with a negative WTD-
SOC correlation. Similarly, the normalized vegetation
index has been proven to have a strong positive correl-
ation with SOC (Bangroo et al 2020), indicating that
vegetation extent should be highly positively correl-
ated with SOC.

4.3. Implications for groundwater management
and research limitations
Our study revealed widespread basin-scale relation-
ships between groundwater and NPP/SOC across
multiple ecosystems globally, though the conclu-
sions drawn are necessarily limited by the quality
of the input datasets. Spatial patterns of WTD-NPP
and WTD-SOC correlations we documented could
help guide groundwater management and policy
development in different regions (Cord et al 2017).

For example, in regions where positive WTD-NPP
and WTD-SOC correlations were concentrated (e.g.,
central North America), with high temperature and
dry conditions, long-term attention should be paid
to the sustainable use and extraction of groundwa-
ter (Gleeson et al 2010). Drawdown of the water table
in these regions can lead to unexpected cascading
effects on multiple ES beyond freshwater supply, for
example, NPP and SOC as revealed in this study,
along with streamflow depletion (Zipper et al 2021,
2022b) and a loss of stream species (Stubbington
et al 2020). In contrast, for basins in South Asia,
where negative WTD-NPP and WTD-SOC relation-
ships were predominant, measures, such as drainage
or alternate irrigation during land management to
lower WTD may have benefits (Sarker et al 2020),
though drainage could also be associated with ecosys-
tem disservices such as impaired surface water qual-
ity (Gramlich et al 2018, Nazari et al 2021). Due to
the bias of WTD, NPP and SOC observational data
towards temperate latitudes in North America and
Europe, the implications and mechanisms of these
WTD-NPP/SOC correlations may bemore robust for
these geographic regions.

Our finding that WTD-NPP andWTD-SOC cor-
relations varied in response to climate factors will
provide insights for understanding potential changes
of groundwater effects under future climate change
(e.g., warming and more frequent extreme events,
such as drought). Among climatic factors, temper-
ature emerged as the most important driver medi-
ating groundwater correlations with both NPP and
SOC, indicating that regions more susceptible to
future global warming would experience the most
drastic changes in the influences of groundwater.
For example, in regions with projected temperature
increases, the importance of groundwater on sustain-
ing NPP or SOC will also be likely to increase, but,
ironically, these regions may at the same time experi-
ence lower groundwater levels from reduced ground-
water recharge and increased irrigation requirements
(Green et al 2011, Crosbie et al 2013, Rodell et al
2018). Previous work has found that severe droughts
caused multi-year declines in terrestrial NPP and
could further degrade terrestrial carbon pools (Zhao
and Running 2010), but subsidies from sustained
groundwater levels may effectively moderate this
scenario (Vicente-Serrano et al 2020). In addition,
substantial spatial variations in groundwater effects
and their response to climate factors highlight that
groundwater effects tend not to be static and thus a
more dynamic approach to understanding and man-
aging groundwater to enhance the sustainable provi-
sion of ES may be required (Elshall et al 2020).

Our research has some limitations. Due to data
availability, only groundwater effects on NPP and
SOC were considered in our analysis; thus, ground-
water effects on a broad array of other ES still require
future investigations. Past local- to regional-scale
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work has demonstrated that changes in WTD can
interact with SOC to further influence crop yield and
biogeochemical cycling (Pohl et al 2015, Huang et al
2021). Hence, groundwater influences on synergies
or tradeoffs among multiple ES needs to be further
explored. Additionally, we used static, global WTD
and SOC products derived from observational data
that are not uniformly distributed (Zhao et al 2005,
Fan et al 2013, Hengl et al 2017) and were there-
fore unable to identify how NPP and SOC respond
to interannual or seasonal groundwater level changes
that can be caused by natural fluctuations or artificial
disturbances. These interannual WTD changes and
effects could be a major concern for water use policy
or groundwater management (Tiemeyer et al 2016),
and merit future investigation (e.g., using coupled
dynamic large-scale groundwater–ecosystem models
or future datasets with improved spatial and tem-
poral resolutions). The development of such inter-
disciplinary research on the dynamics of groundwa-
ter and its social-ecological effects is necessary in the
context of environmental change and socioeconomic
development.

5. Conclusion

Our work revealed that groundwater effects on NPP
and SOC were spatially heterogeneous and differed
depending on the type of ES across the globe. We
identified multiple environmental factors that medi-
ated groundwater relationships with two ES indicat-
ors, particularly for climate (temperature, precipit-
ation and aridity) and land use (vegetation extent)
factors. Constraint effects onWTD-NPP/SOC correl-
ations imply that climate changesmay saturate poten-
tial groundwater relationships with NPP and SOC.
In tandem, our work suggests that future ES research
should address potential conservation and holistic
management implications of changes to groundwa-
ter flows and levels. The widespread WTD-NPP and
WTD-SOC relationshipswe detected indicate that cli-
mate and land-use changes that alter groundwater
dynamics may have cascading impacts on the sus-
tainable provision of ES through different biogeo-
chemical and hydrological pathways. Our study high-
lights the importance of integrating multiple sources
and disparate datasets to understand large-scale ES
patterns and dynamics, their environmental controls
and responses to current and future environmental
changes.
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